Derivative of sin^3x - Is it 3(sinx)^2 * cosx?

  • Thread starter Thread starter gr3g1
  • Start date Start date
  • Tags Tags
    Derivative
gr3g1
Messages
71
Reaction score
0
Hi,

sin^3x is thhe same as (sinx)^3

So, I use thhe chain rule and get
3(sinx)^2 * cosx

is this corrent?
 
Physics news on Phys.org
yes that is right
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top