Derivative of Trig Function | Find y' for (sec (2x))/(1 + tan (2x))

  • Thread starter Thread starter Jumpy Lee
  • Start date Start date
  • Tags Tags
    Function Trig
Jumpy Lee
Messages
20
Reaction score
0

Homework Statement



Find y' of the following

Homework Equations



y = (sec (2x))/(1 + tan (2x))

The Attempt at a Solution



y' = [(1 + tan (2x))(2 sec (2x) tan (2x)) - (sec (2x))(2 (sec (2x))^2)]/[(1 + tan (2x))^2]


i can not quite figure out how it reduces to:

y' = [(2 sec (2x))(tan (2x) - 1)]/[(1 + tan (2x))^2]
 
Physics news on Phys.org
Try using the identity sec2x=1+tan2x on the last term in the numerator. Then it should simplify to the result you state.
 
Last edited:
You had

y^\prime =\frac{(1 + \tan 2x)(2\sec 2x \tan 2x) - (\sec 2x)(2 \sec^{2} 2x)}{(1 + \tan 2x)^2}=\frac{2\sec 2x \left[(1 + \tan 2x)\tan 2x - \sec^{2} 2x\right]}{(1 + \tan 2x)^2}
=\frac{2\sec 2x \left[\tan 2x + \tan^{2} 2x - (1 + \tan^{2} 2x)\right]}{(1 + \tan 2x)^2}=\frac{2\sec 2x (\tan 2x - 1)}{(1 + \tan 2x)^2}
 
thank you cristo and benorin
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top