Derivatives of Trigonometric Functions: Solving for dy/dx and d²y/dx²

  • Thread starter Thread starter JBD2
  • Start date Start date
  • Tags Tags
    Derivative
JBD2
Messages
61
Reaction score
0

Homework Statement


If x = cos(3t) and y = (sin(3t))² find dy/dx and d²y/dx².

Homework Equations


d/dx cosx = -sinx
d/dx sinx = cosx

The Attempt at a Solution


dx/dt = -3sin3t
dy/dt = 6sin3tcos3t

Not sure what to do now.
 
Physics news on Phys.org
(dy/dt)/(dx/dt)=dy/dx, right?
 
Yes, thank you. After I posted I wondered whether you could do that or not (a little unfamiliar with Leibniz notation) but it makes sense now thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top