Derive cos'x from cos(A)-cos(B)

  • Thread starter Thread starter Karol
  • Start date Start date
  • Tags Tags
    Derive
Karol
Messages
1,380
Reaction score
22

Homework Statement


Use ##~\cos\alpha-\cos\beta~## to develop the formula for the derivative of cos(x) from the definition:
$$\frac{d(\cos x)}{dx}=\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}$$

Homework Equations


$$\cos\alpha-\cos\beta=(-2)\sin\left( \frac{\alpha+\beta}{2} \right)\cdot \sin\left( \frac{\alpha-\beta}{2} \right)$$
$$\lim\frac{\sin x}{x}=1$$

The Attempt at a Solution


$$\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}=...=(-2)\lim\frac{\sin\left( \frac{2x+\Delta x}{2} \right)}{\Delta x}\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
Even if i could use ##~\lim\frac{\sin x}{X}=1~##, which would eliminate the second member, i can't deal with the first member.
 
Physics news on Phys.org
Karol said:

Homework Statement


Use ##~\cos\alpha-\cos\beta~## to develop the formula for the derivative of cos(x) from the definition:
$$\frac{d(\cos x)}{dx}=\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}$$

Homework Equations


$$\cos\alpha-\cos\beta=(-2)\sin\left( \frac{\alpha+\beta}{2} \right)\cdot \sin\left( \frac{\alpha-\beta}{2} \right)$$
$$\lim\frac{\sin x}{x}=1$$

The Attempt at a Solution


$$\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}=...=(-2)\lim\frac{\sin\left( \frac{2x+\Delta x}{2} \right)}{\Delta x}\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
Even if i could use ##~\lim\frac{\sin x}{X}=1~##, which would eliminate the second member, i can't deal with the first member.
You divide by Δx too many times.
 
$$\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}=(-2)\lim\frac{\sin\left( \frac{x+\Delta x+x}{2}\right)\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
$$=(-2)\lim \sin\left( \frac{2x+\Delta x}{2} \right)\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
$$u=\frac{\Delta x}{2}, ~~\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}=\lim\frac{\sin u}{2u}=\frac{1}{2}$$
$$\cos'x=-\sin x$$
 
Last edited:
Karol said:
$$\lim\frac{\cos(x+\Delta x)-\cos x}{\Delta x}=(-2)\lim\frac{\sin\left( \frac{x+\Delta x+x}{2}\right)\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
$$=(-2)\lim \sin\left( \frac{2x+\Delta x}{2} \right)\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}$$
$$u=\frac{\Delta x}{2}, ~~\lim\frac{\sin\left( \frac{\Delta x}{2} \right)}{\Delta x}=\lim\frac{\sin u}{2u}=\frac{1}{2}$$
$$\cos'x=-\sin x$$
OK.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top