nameVoid
- 238
- 0
Is it correct to take the derivative of a taylor series the same as you would for a power series ie:
<br /> sinx=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}<br />
<br /> \frac{d}{dx}(sinx)=cosx=\sum_{n=1}^{\infty}(-1)^n(2n+1)\frac{x^{2n}}{(2n+1)!}<br />
it seems as if it wouldn't be
<br /> cosx=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}<br />
<br /> sinx=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}<br />
<br /> \frac{d}{dx}(sinx)=cosx=\sum_{n=1}^{\infty}(-1)^n(2n+1)\frac{x^{2n}}{(2n+1)!}<br />
it seems as if it wouldn't be
<br /> cosx=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}<br />