Deriving decomposition of transverse acceleration

AI Thread Summary
The discussion focuses on deriving the acceleration vector from the velocity vector in polar coordinates. The user successfully derived an alternate form of the acceleration but struggled to simplify the transverse component into the textbook's version. A solution is provided, highlighting the use of the product rule and chain rule to demonstrate the equivalence of the two expressions. The explanation emphasizes differentiating the term correctly to achieve the desired simplification. The user acknowledges the oversight in not applying the chain rule during their initial attempts.
philipfisher
Messages
2
Reaction score
0

Homework Statement



The question asks one to derive the acceleration vector,

$$\vec{a} = [\frac{d^2r}{dt^2} - r(\frac{d\Theta}{dt})^2]\vec{u}_r + [\frac{1}{r}\frac{d}{dt}(r^2\frac{d\Theta }{dt})]\vec{u}_\Theta$$

from the velocity vector.

$$\vec{v} = \vec{u}_r\frac{dr}{dt} + \vec{u}_\Theta \frac{d\Theta }{dt}$$

Homework Equations



See above.

The Attempt at a Solution



I have had no problem deriving this version of the acceleration vector,

$$\vec{a} = [\frac{d^2r}{dt^2} - r(\frac{d\Theta}{dt})^2]\vec{u}_r + [2\frac{dr}{dt}\frac{d\Theta }{dt}+r\frac{d^2\Theta }{dt^2}]\vec{u}_\Theta$$

from the velocity vector. But I'm stumped on how one simplifies my version of the transverse component of acceleration,

$$2\frac{dr}{dt}\frac{d\Theta }{dt}+r\frac{d^2\Theta }{dt^2}$$

into the textbook's version.

$$\frac{1}{r}\frac{d}{dt}(r^2\frac{d\Theta }{dt})$$

Any chance someone could give me a hint? I've googled for an explanation without any success. I've also looked in two different textbooks, both of which just state that,

$$2\frac{dr}{dt}\frac{d\Theta }{dt}+r\frac{d^2\Theta }{dt^2} = \frac{1}{r}\frac{d}{dt}(r^2\frac{d\Theta }{dt})$$

without explaining why. I'm guessing the process of simplification is so basic that the texts just assume it needs no explaining, but the simplification eludes me and I'd really appreciate whatever help anyone could provide. Thanks.
 
Physics news on Phys.org
philipfisher said:
$$\frac{1}{r}\frac{d}{dt}(r^2\frac{d\Theta }{dt})$$

You can just use the standard product rule here (combined with the chain rule), remembering that r is a function of t.
 
Welcome to PF,

It's a case where, if you work backwards, you'll see that this relation is true:$$\frac{1}{r}\frac{d}{dt}(r^2\frac{d\Theta }{dt})$$

Differentiate using the product rule:$$= \frac{1}{r}\frac{d\Theta }{dt}\frac{d}{dt}(r^2) + \frac{1}{r}(r^2)\frac{d}{dt}\left(\frac{d\Theta }{dt}\right)$$ $$=\frac{1}{r}2r\frac{dr}{dt}\frac{d\Theta}{dt} + r\frac{d^2\Theta}{dt^2}$$

In the last step, in the leftmost term, r2 was differentiated using the chain rule

Edit: eventually you'll get adept at "reverse" differentiating things that are exact derivatives in your head, and something like this will be clear by inspection.
 
Thank you. I'd tried the process of working backward by differentiating the textbook answer, but completely forgot the need to use the chain rule when doing so. I really appreciate the help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top