Deriving Electric Field in a Charged Rod and Shell System"

  • Thread starter Thread starter chillaxin
  • Start date Start date
  • Tags Tags
    Gauss's law Law
AI Thread Summary
A long straight conducting rod with a linear charge density of +2.0 µC/m is enclosed by a cylindrical shell with a charge density of -2.0 µC/m. To find the electric field between the rod and the shell, a Gaussian surface is used, considering only the positive charge of the rod for calculations. The electric field outside the shell is determined to be zero due to the total enclosed charge being zero. The discussion emphasizes that the electric field is not constant between the rod and the shell, and the calculations must reflect the specific regions being analyzed. Understanding the charge distribution is crucial for accurately deriving the electric field in both scenarios.
chillaxin
Messages
5
Reaction score
0
A long straight conducting rod (or wire) carries a linear charge density of +2.0uC/m. This rod is totally enclosed within a thin cylindrical shell of radius R, which carries a linear charge density of -2.0uC/m.
A) Construct a Gaussian cylindrical surface between the rod and the shell to derive then electric field in the inner space as a function of the distance from the center of the rod.
B) Construct a Gaussian cylindrical surface outside both the rod and the shell to calculate the electric field outside the shell.

This is what i have so far.

E=q/4piEor^2
E=+2.0uC/m / 4pi8.85x10^-12(-2uC/m)^2
E=4.5x10^9Nm^2/C
 
Physics news on Phys.org
Anybody?!?
 
chillaxin said:
A long straight conducting rod (or wire) carries a linear charge density of +2.0uC/m. This rod is totally enclosed within a thin cylindrical shell of radius R, which carries a linear charge density of -2.0uC/m.
A) Construct a Gaussian cylindrical surface between the rod and the shell to derive then electric field in the inner space as a function of the distance from the center of the rod.
B) Construct a Gaussian cylindrical surface outside both the rod and the shell to calculate the electric field outside the shell.

This is what i have so far.

E=q/4piEor^2
E=+2.0uC/m / 4pi8.85x10^-12(-2uC/m)^2
E=4.5x10^9Nm^2/C
The field is certainly not constant in the region between the rod and the cylinder. Are these anwers to multiple parts? Just the first part?
 
Last edited:
Unless I'm mistaken, the total charge inclosed in the whole system is zero. If the enclosed charge is zero, the electric field is zero. Thus from what I can draw, the answer to B is zero. The answer to A requires using the enclosed charge to be the positive portion and then solving for E.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top