A Deriving Equations of Motion in GR

Matter_Matters
Messages
35
Reaction score
2
Question Background:
I'm considering the Eddington-Robertson-Schiff line element which is given by
(ds)^2 = \left( 1 - 2 \left(\frac{\mu}{r}\right) + 2 \left(\frac{\mu^2}{r^2}\right) \right) dt^2 - \left( 1 + 2 \left( \frac{\mu}{r} \right) \right) (dr^2 + r^2 d\theta^2 + r^2 \sin^2{\theta} \;d\phi^2 ),
where \mu = GM = \text{const.} and r=|\mathbf{r}|.
I'm interested in determining the equations of motion for such a line element which can be obtained from the least action principle. The classical action S is the integral along the particle trajectory
S = \int ds,
which can be equivalently expressed as
S = \int \left( \frac{ds}{dt} \right) dt \equiv \int L \; dt.
We can see from the above that
L = \left[ \left( 1 - 2 \left(\frac{\mu}{r}\right) + 2 \left(\frac{\mu^2}{r^2}\right) \right) - \left( 1 + 2 \left( \frac{\mu}{r} \right) \right) (\mathbf{\dot{r}} \cdot \mathbf{\dot{r}}) \right]^{1/2},
where L is the associated Lagrangian over time.
Problem and question
The associated equations of motion are given by (Eq. 20)
\frac{d^2\mathbf{r}}{dt^2} = \frac{\mu}{r^3} \left[ \left(4 \frac{\mu}{r} - v^2 \right) \mathbf{r} + 4 (\mathbf{r}\cdot \mathbf{\dot{r}} ) \mathbf{\dot{r}}\right].
I cannot for the life of me obtain this using the Euler-Lagrange equations.
Attempt at a solution:
The Euler-Lagrange equations are given by
\frac{d}{dt} \left( \frac{\partial L}{\partial \mathbf{\dot{r}}} \right) - \frac{\partial L}{ \partial \mathbf{r}} =0.
I note that the equations of motion should be equivalent for either
L = \sqrt{g_{\mu\nu} \dot{x}^{\mu}\dot{x}^\mu},
or
L = g_{\mu\nu} \dot{x}^{\mu}\dot{x}^\mu.
Bearing this in mind and working through the process using
L = \left[ \left( 1 - 2 \left(\frac{\mu}{r}\right) + 2 \left(\frac{\mu^2}{r^2}\right) \right) - \left( 1 + 2 \left( \frac{\mu}{r} \right) \right) (\mathbf{\dot{r}} \cdot \mathbf{\dot{r}}) \right],
I find
\frac{d}{dt} \left( \frac{\partial L}{ \partial \mathbf{\dot{r}}} \right) = -2 \left[ \left( 1 + 2 \frac{\mu}{r} \mathbf{\ddot{r}} \right) - 2 \frac{\mu}{r^3} (\mathbf{r}\cdot \mathbf{\dot{r}}) \mathbf{\dot{r}} \right],
and
\left( \frac{\partial L }{\partial \mathbf{r}} \right) = 2\frac{\mu}{r^3} \mathbf{r} - 4 \frac{\mu^2}{r^4} \mathbf{r} + 2 \frac{\mu}{r^3} \mathbf{r} (\mathbf{\dot{r}} \cdot \mathbf{\dot{r}} ).
Clearly, adding these together does not give the desired result. Any suggestions?
 
Physics news on Phys.org
Matter_Matters said:
I note that the equations of motion should be equivalent for either
L=√gμν˙xμ˙xμ,L=gμνx˙μx˙μ,​
L = \sqrt{g_{\mu\nu} \dot{x}^{\mu}\dot{x}^\mu},
or
L=gμν˙xμ˙xμ.L=gμνx˙μx˙μ.​
L = g_{\mu\nu} \dot{x}^{\mu}\dot{x}^\mu.
This is only true if the geodesic is parametrised by an affine parameter. The coordinate ##t## is in general not affine.
 
  • Like
Likes Matter_Matters
Orodruin said:
This is only true if the geodesic is parametrised by an affine parameter. The coordinate ##t## is in general not affine.
O wow! If this was the issue the whole time I will be very pleased but also annoyed at my ignorance!
 
Orodruin said:
This is only true if the geodesic is parametrised by an affine parameter. The coordinate ##t## is in general not affine.
Hmmm I am confused now! So, normally in GR we can set the Lagrangian = ##\pm c## depending on the signature of the line element. Is this only true when the geodesic is parametrised by an affine parameter also? Even using the ## L = \sqrt{ }##, I can't seem to manage to get the correct expression!
 
Matter_Matters said:
So, normally in GR we can set the Lagrangian = ±c depending on the signature of the line element. Is this only true when the geodesic is parametrised by an affine parameter also?
In general, it will just give you a requirement that gives an affine parametrisation (constant length tangent vector). It tells you nothing about whether or not you found a geodesic.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top