Deriving expressions for angular velocity and acceleration

  • Thread starter drofenaz
  • Start date
  • #1
7
0

Homework Statement


Derive the expressions for the [itex]i_r[/itex] and [itex]i_θ[/itex] components of velocity and acceleration.

Homework Equations


[itex]r=|r|i_r[/itex]

[itex]\omega=\frac{dr}{dt}[/itex]

[itex]\alpha=\frac{dω}{dt}=\frac{d^2r}{dt}[/itex]

The Attempt at a Solution


[itex]r=|r|i_r[/itex]

[itex]\omega=\frac{dr}{dt}i_r+r\frac{di_r}{dt}[/itex]

[itex]\alpha=\frac{d^2r}{dt^2}i_r+\frac{dr}{dt}\frac{di_r}{dt}+\frac{d^2i_r}{dt^2}r+\frac{di_r}{dt}\frac{dr}{dt}[/itex]

4. The solutions I need to get to
[itex]\omega=\frac{dr}{dt}i_r+r\frac{d_\theta}{dt}i_θ[/itex]

[itex]\alpha=\frac{d^2r}{dt^2}i_r+\frac{dr}{dt}\frac{di_\theta}{dt}i_\theta+\frac{dr}{dt} \frac{d\theta}{dt}i_\theta+r\frac{d^2\theta}{dt^2}i_\theta-r\left(\frac{d\theta}{dt}\right)^2i_r[/itex]

5. Thoughts
I think that they're substituting in something for parts of my answer. I just don't know what they're substituting in, or how to find it.
 
Last edited:

Answers and Replies

  • #2
993
13
... [itex]\omega=\frac{dr}{dt}[/itex]

[itex]\alpha=\frac{dω}{dt}=\frac{d^2r}{dt}[/itex]...
[itex]\omega[/itex] [itex]\neq[/itex] [itex]\frac{dr}{dt}[/itex] but [itex]\omega[/itex] = [itex]\frac{d\theta}{dt}[/itex].

[itex]\alpha[/itex] [itex]\neq[/itex] [itex]\frac{d^{2}r}{dt^{2}}[/itex] but [itex]\alpha[/itex] = [itex]\frac{d\omega}{dt}[/itex] = [itex]\frac{d^{2}\theta}{dt^{2}}[/itex]
 
  • #3
7
0
So basically I'm doing it completely wrong. Would my work be correct for v and a instead of ω and [itex]\alpha[/itex]?

I'm not quite sure how to solve the problem. Could you point me in the right direction?
 
  • #4
993
13
oops!
let me try again.
 
Last edited:
  • #5
993
13
... The solutions I need to get ...
[itex]\omega=\frac{dr}{dt}i_r+r\frac{d_\theta}{dt}i_θ[/itex]

[itex]\alpha=\frac{d^2r}{dt^2}i_r+\frac{dr}{dt}\frac{di_\theta}{dt}i_\theta+\frac{dr}{dt} \frac{d\theta}{dt}i_\theta+r\frac{d^2\theta}{dt^2}i_\theta-r\left(\frac{d\theta}{dt}\right)^2i_r[/itex]...
I think that what you were asked to derive are:

[itex]v=\frac{dr}{dt}i_r+r\frac{d_\theta}{dt}i_θ[/itex]

and

[itex]a=\frac{d^2r}{dt^2}i_r+\frac{dr}{dt}\frac{d\theta}{dt}i_\theta+\frac{dr}{dt} \frac{d\theta}{dt}i_\theta+r\frac{d^2\theta}{dt^2}i_\theta-r\left(\frac{d\theta}{dt}\right)^2i_r[/itex]
 
  • #6
7
0
I have solved the problem. Hopefully typing up my work will help someone someday.


SOLVING FOR KNOWNS

[itex]i_r=cos\theta+sin\theta[/itex]

[itex]\frac{di_r}{dt}=-sin\theta+cos\theta[/itex]

[itex]\frac{di_r}{dt}=\frac{d\theta}{dt}i_\theta[/itex]



[itex]i_\theta=-sin\theta+cos\theta[/itex]

[itex]\frac{di_\theta}{dt}=-cos\theta-sin\theta[/itex]

[itex]\frac{di_\theta}{dt}=-\frac{d\theta}{dt}i_r[/itex]




POSITION VECTOR

[itex]r=ri_r[/itex]




SOLVING FOR VELOCITY

[itex]v=\frac{dr}{dt}[/itex]

[itex]v=\frac{dr}{dt}i_r+\frac{di_r}{dt}r[/itex]

After substituting what we know, we get:

[itex]v=\frac{dr}{dt}i_r+r\frac{d\theta}{dt}i_\theta[/itex]

So the solutions for velocity are:

[itex]v_r=\frac{dr}{dt}[/itex]

[itex]v_\theta=r\frac{d\theta}{dt}[/itex]




SOLVING FOR ACCELERATION

[itex]a=\frac{dv}{dt}[/itex]

[itex]a=\frac{d^2r}{dt^2}i_r+\frac{di_r}{dt}\frac{dr}{dt}+\frac{dr}{dt}\frac{d\theta}{dt}i_\theta+r \frac{d^2\theta}{dt^2}i_\theta+r\frac{d\theta}{dt}\frac{di_\theta}{dt}[/itex]

After substituting what we know, we get:

[itex]a=\frac{d^2r}{dt^2}i_r+\frac{d\theta}{dt}\frac{dr}{dt}i_\theta+\frac{dr}{dt}\frac{d\theta}{dt}i_θ+r \frac{d^2\theta}{dt^2}i_\theta-r\frac{d\theta}{dt}\frac{d\theta}{dt}i_r[/itex]

And then we simplify to get:

[itex]a=\frac{d^2r}{dt^2}i_r+2\frac{d\theta}{dt}\frac{dr}{dt}i_\theta+r\frac{d^2\theta}{dt^2}i_\theta-r\left(\frac{d\theta}{dt}\right)^2i_r[/itex]

So the solutions for acceleration are:

[itex]a_r=\frac{d^2r}{dt^2}-r\left(\frac{d\theta}{dt}\right)^2[/itex]

[itex]a_\theta=2\frac{d\theta}{dt}\frac{dr}{dt}+r\frac{d^2\theta}{dt^2}[/itex]
 

Related Threads on Deriving expressions for angular velocity and acceleration

Replies
10
Views
1K
  • Last Post
Replies
7
Views
2K
Replies
12
Views
2K
Replies
5
Views
8K
Replies
19
Views
5K
Replies
4
Views
534
Replies
3
Views
920
Replies
5
Views
1K
  • Last Post
Replies
4
Views
2K
Top