Deriving of the constants in Fourier Analysis

AI Thread Summary
The discussion centers around the derivation of constants in Fourier Analysis and the use of LaTeX for formatting equations. The user struggles with LaTeX markup, seeking clarity on why their equations appear as source code instead of formatted equations. The conversation includes the explanation of why certain integrals in Fourier Analysis equal zero, specifically noting that the first two integrals are zero due to properties of sine and odd functions. Additionally, there is a clarification on the nature of odd and even functions, emphasizing that the product of an odd function and an even function results in an odd function. The thread concludes with a request for further explanations on these mathematical concepts.
PsychonautQQ
Messages
781
Reaction score
10

Homework Statement


Wow LaTex fail... anyone know how i make this look like not ****? I had it looking all pretty on http://www.codecogs.com/latex/eqneditor.php and it gave me these codes as my latex markup but it didn't come out right... why do they look like source code and not the pretty equations they are supposed to?

Fourier Analysis equation:
$\displaystyle v(t)=a_0 + \sum_{n=1}^N a_ncos(nwt) + \sum_{m=1}^M a_msin(mwt)
\displaystyle a_n= \frac{2}{T}\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}v\(t)cos(nwt)\, dt
\displaystyle b_n= \frac{2}{T}\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}v\(t)sin(mwt)\, dt

To show that the coefficients a and b are given by the equations above, we multiply v(t) by cos(2∏kt/T) and integrate with respect to time from t = -T/2 to t = T/2

\displaystyle \int\limits_{\frac{-T}{2}}^{\frac{T}{2}}\ ((a_0+\sum_{n=1}^N a_n cos(\frac{2\pi nt}{T}) +\sum_{m=1}^M b_m sin(\frac{2\pi mt}{T}))

which will give us three types of integrals
\displaystyle a_0\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}cos\frac{2\pi kt}{T}\,\ dt=0
\displaystyle \sum_{m=1}^M b_m\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}sin\frac{2\pi mt}{T}cos\frac{2\pi kt}{T}dt=0
\displaystyle \sum_{n=1}^N a_n\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}cos\frac{2\pi nt}{T}cos\frac{2\pi kt}{T}dt= T/2 (n=k)

My question is why do the first two of these three integrals equal zero?
(first time using LaTex holy crap took forever
 
Last edited:
Physics news on Phys.org
Assuming I'm deciphering the equations correctly, then the first integrals equal zero because the integral will be a sin function, and between the limits you will always have integer multiples of pi for any k (sin k*pi = sin(-k*pi) = 0)
The second integral is zero because it is an odd function integrated between symmetric limits. (an odd function multiplied by an even function is an odd function).
 
Last edited:
  • Like
Likes 1 person
PsychonautQQ said:

Homework Statement


Wow LaTex fail... anyone know how i make this look like not ****? I had it looking all pretty on http://www.codecogs.com/latex/eqneditor.php and it gave me these codes as my latex markup but it didn't come out right... why do they look like source code and not the pretty equations they are supposed to?

Fourier Analysis equation:
$$\displaystyle v(t)=a_0 + \sum_{n=1}^N a_ncos(nwt) + \sum_{m=1}^M a_msin(mwt)$$
$$\displaystyle a_n= \frac{2}{T}\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}v\(t)cos(nwt)\, dt$$
$$\displaystyle b_n= \frac{2}{T}\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}v\(t)sin(mwt)\, dt$$

To show that the coefficients a and b are given by the equations above, we multiply v(t) by cos(2∏kt/T) and integrate with respect to time from t = -T/2 to t = T/2

$$\displaystyle \int\limits_{\frac{-T}{2}}^{\frac{T}{2}}\ ((a_0+\sum_{n=1}^N a_n cos(\frac{2\pi nt}{T}) +\sum_{m=1}^M b_m sin(\frac{2\pi mt}{T}))$$

which will give us three types of integrals
$$\displaystyle a_0\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}cos\frac{2\pi kt}{T}\,\ dt=0$$
$$\displaystyle \sum_{m=1}^M b_m\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}sin\frac{2\pi mt}{T}cos\frac{2\pi kt}{T}dt=0$$
$$\displaystyle \sum_{n=1}^N a_n\int\limits_{\frac{-T}{2}}^{\frac{T}{2}}cos\frac{2\pi nt}{T}cos\frac{2\pi kt}{T}dt= T/2 (n=k)$$

My question is why do the first two of these three integrals equal zero?
(first time using LaTex holy crap took forever

Use $$ instead of $. More here:https://www.physicsforums.com/showpost.php?p=3977517&postcount=3
 
  • Like
Likes 1 person
DeltaFunction said:
Assuming I'm deciphering the equations correctly, then the first integrals equal zero because the integral will be a sin function, and between the limits you will always have integer multiples of pi for any k (sin k*pi = sin(-k*pi) = 0)
The second integral is zero because it is an odd function integrated between symmetric limits. (an odd function multiplied by an even function is an odd function).

So sin is an odd function then? Why is cos * sin an odd function? I can't find any good explanations on google.

P.S thanks Tsny
 
It is kinda simple, just like multiplying numbers, an odd times an even number results in an odd number.

If you want a more rigorous definition then you can go back to the definition of odd and even. Assume g(x) is odd and f(x) is even.

Then the product h(x)= f(x)*g(x). To check the parity of h(x) we find h(-x)= g(-x)*f(-x).

Remembering what it means to be an odd or even function we get g(-x)*f(-x)= -g(x)*f(x)= -h(x).

Leaving you with h(x)= -h(-x); otherwise known as an odd function.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top