John O' Meara
- 325
- 0
Schodinger's equation for one-dimensional motion of a particle whose potential energy is zero is
\frac{d^2}{dx^2}\psi +(2mE/h^2)^\frac{1}{2}\psi = 0
where \psi is the wave function, m the mass of the particle, E its kinetic energy and h is Planck's constant. Show that
\psi = Asin(kx) + Bcos(kx) ( where A and B are constants) and k =(2mE/h^2)^\frac{1}{2} is a solution of the equation.
Using the boundary conditions \psi=0 when x=0 and when x=a, show that
(i) the kinetic energy E=h^2n^2/8ma^2
(ii) the wave function \psi = A sin(n\pi\times x/a) where n is any integer. (Note if sin(\theta) = 0 then \theta=n\pi)
My attempt:
A*sin(0) + B*cos(0) = 0, => 0 +B =0 => B = 0.
Therefore
A*sin(k*a)=0, Therefore (2mE/h^2)^\frac{1}{2}a = n\pi => E=n^2\pi^2h^2/2ma^2
\frac{d^2}{dx^2}\psi +(2mE/h^2)^\frac{1}{2}\psi = 0
where \psi is the wave function, m the mass of the particle, E its kinetic energy and h is Planck's constant. Show that
\psi = Asin(kx) + Bcos(kx) ( where A and B are constants) and k =(2mE/h^2)^\frac{1}{2} is a solution of the equation.
Using the boundary conditions \psi=0 when x=0 and when x=a, show that
(i) the kinetic energy E=h^2n^2/8ma^2
(ii) the wave function \psi = A sin(n\pi\times x/a) where n is any integer. (Note if sin(\theta) = 0 then \theta=n\pi)
My attempt:
A*sin(0) + B*cos(0) = 0, => 0 +B =0 => B = 0.
Therefore
A*sin(k*a)=0, Therefore (2mE/h^2)^\frac{1}{2}a = n\pi => E=n^2\pi^2h^2/2ma^2
Homework Statement
Homework Equations
The Attempt at a Solution
Last edited: