Designing a spiral with a certain angle relative to movement direction

AI Thread Summary
The discussion centers on designing a spiral path for a disk moving from an inner to an outer track while maintaining a specific angle relative to its movement direction. The user expresses concerns about their calculations, particularly regarding the angle of 45 degrees and potential issues with division by zero in their derivative calculations. They explore the concept of equiangular spirals and their geometric properties, noting that these spirals maintain a constant angle, which contrasts with their initial intuition. The mechanics of the disk's movement are clarified, including the role of a pin and a wall that restricts track switching until a certain point is reached. The conversation concludes with an acknowledgment of the self-similar nature of the spiral design, emphasizing its mathematical elegance.
DefinitelyAnEnjinear
Messages
10
Reaction score
6
TL;DR Summary
Designing a spiral with a 45 degree angle relative to the movement of a disk orbiting around a point
I have a disk traveling on the inner blue track (let's say the blue part is the center of the disk).
I want to push the disk outside (as the disk is traveling in a circle) to the outer track.
The black part is the wall separating the tracks

1664044007937.png

To that end, I've made some calculations, but I have some concerns regarding my results, and am wondering if there's a better way to go about it.
I have a decent math background, but no engineering background at all.

I started out by noting the direction of movement for the disk, say it's moving counter-clockwise. If c is a point on the inner circle (for simplicity: unit circle), then the movement direction is determined as follows:
1664044216960.gif

Also, some relevant trigonometric identities:
1664044360242.gif

where Δθ is the angle between u and v.

Let's say I want a 45 degree angle between my spiral and the movement direction of the disk (my very limited physics knowledge tells me a steeper angle would require more force to be applied because more of the "equal and opposite reaction" thing would be in the direction that's against the disk movement. Obviously a smaller angle would mean it takes longer to get the disk as far as I need it to go).
The sine and cosine of 45 degrees go without saying, yielding:
1664047123247.gif

And after doing some mathTM
1664044740436.gif

1664047195662.gif

So now we have v, which... I'm not sure how to put this into words in a technically accurate way, so let's say it's the direction of the tangent to the spiral. Meaning its slope is that of the derivative. Meaning:
1664048026581.gif

is the derivative of the function describing my spiral, with α being the angle between the x-axis and the vector pointing to some point on the circle.

This is the part where I start to get worried and confused, because (1) I potentially have a division by 0 here, and (2) the point is to move the disk during rotation and I'm not sure if my reasoning still holds at this point.

With a little help from wikipedia I got to:
1664048286861.gif

Being my derivative.
So if, say, I wanted to start the transition when we're at 45 degrees... I start off on a singularity.

So, did I get anything wrong? Is there a better approach to solving this problem?
 
Engineering news on Phys.org
Try researching "equiangular spiral" (or Bernoulli spiral or logarithmic spiral). Does that help?
 
  • Like
Likes The Bill and DefinitelyAnEnjinear
What is driving the rotation and what is forcing the disc to follow the circular trajectories and switch from one to another?
 
hutchphd said:
Try researching "equiangular spiral" (or Bernoulli spiral or logarithmic spiral). Does that help?
A brief look tells me the distances increase geometrically as opposed to an Archimedean spiral where the distances increase by a constant. Is this really what I should be looking at? my intuition tells me I need distances that increase by a constant, don't I?

Edit: I see now that the angle remains a constant according to wikipedia. counter-intuitive to me but it definitely seems like the answer.

Lnewqban said:
What is driving the rotation and what is forcing the disc to follow the circular trajectories and switch from one to another?
1664051376636.png

The disk will have a pin in it that will be able to move back and forth in a slot in a gear which will be driven.
There will be a wall preventing the disk from switching tracks until it reaches the point
I didn't want to complicate the question with details that seem unimportant.
 
DefinitelyAnEnjinear said:
intuitive to me but it definitely seems like the answer.
What I find interesting (and obvious, after you see it!) is that the spiral is self-similar: If you "blow it up" uniformly it can be laid atop the smaller version exactly (with a rotation). Of course that follows from the equal angle requirement. Fun.
 
  • Like
  • Informative
Likes The Bill and DefinitelyAnEnjinear
DefinitelyAnEnjinear said:
...
The disk will have a pin in it that will be able to move back and forth in a slot in a gear which will be driven.
There will be a wall preventing the disk from switching tracks until it reaches the point
I didn't want to complicate the question with details that seem unimportant.
I see.
Thank you.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...

Similar threads

Back
Top