Happiness said:
Yes, but I'm afraid I'm not well versed in it.
OK, let me try to explain it then. First, note that any equation of the form ##Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0## can be written as
$$\left(\begin{array}{cc} x & y\end{array}\right)\left(\begin{array}{cc} A & B/2\\ B/2 & C\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) +\left(\begin{array}{cc} D & E\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) + F = 0$$
Using diagonalization, we can diagonalize the matrix ##\delta = \left(\begin{array}{cc} A & B/2\\ B/2 & C\end{array}\right)##. Note that this is a symmetric matrix, so we can write ##\delta = P^{-1}\delta^\prime P##, where ##P## are rotation/reflection matrices and ##\delta^\prime## is a diagonal matrix. So by the coordinate change ##(x,y)\rightarrow P(x,y)##, we can write the above equation with ##\delta## changed by a diagonal matrix. This comes down to eliminating the ##xy## term. Thus we get
$$A' x^2 + C' y^2 + D' x + E'y + F' = 0$$
Now we complete the squares to obtain the standard form.
I think an example will be much more useful than this general technique. Take
$$3x^2 - 10xy + 3y^2 + 14x - 2y + 3 = 0.$$
Writing this in matrix form, we get
$$\left(\begin{array}{cc} x & y\end{array}\right)\left(\begin{array}{cc} 3 & -5\\ -5 & 3\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) +\left(\begin{array}{cc} 14 & -2\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) + F = 0$$
The usual techniques of diagonalization give us
$$\left(\begin{array}{cc} 3 & -5\\ -5 & 3\end{array}\right) = \left(\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2}\end{array}\right)\left(\begin{array}{cc} 8 & 0\\ 0 & -2\end{array}\right)\left(\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2}\end{array}\right)^{-1}$$
Note that in fact, this is
$$\left(\begin{array}{cc} 3 & -5\\ -5 & 3\end{array}\right) = \left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)\left(\begin{array}{cc} 8 & 0\\ 0 & -2\end{array}\right)\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)^{-1}$$
So by rotating our axis ##-\pi/4## radians, which comes down to changing variables
$$\left(\begin{array}{c} x\\ y \end{array}\right)=\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)\left(\begin{array}{cc} x'\\ 'y\end{array}\right)$$
Then we have that
$$\left(\begin{array}{cc} x & y\end{array}\right)\left(\begin{array}{cc} 3 & -5\\ -5 & 3\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) +\left(\begin{array}{cc} 14 & -2\end{array}\right)\left(\begin{array}{c} x\\ y\end{array}\right) + F = 0$$
Is equivalent to
$$\left(\begin{array}{cc} x' & y'\end{array}\right)\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)^T\left(\begin{array}{cc} 3 & -5\\ -5 & 3\end{array}\right)\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)\left(\begin{array}{c} x'\\ y'\end{array}\right) +\left(\begin{array}{cc} 14 & -2\end{array}\right)\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)\left(\begin{array}{c} x'\\ y'\end{array}\right) + F = 0$$
or
$$\left(\begin{array}{cc} x' & y'\end{array}\right)\left(\begin{array}{cc} 8 & 0\\ 0 & -2\end{array}\right)\left(\begin{array}{c} x'\\ y'\end{array}\right) +\left(\begin{array}{cc} 14 & -2\end{array}\right)\left(\begin{array}{cc} \cos(-\pi/4) & -\sin(-\pi/4) \\ \sin(-\pi/4) & \cos(-\pi/4)\end{array}\right)\left(\begin{array}{c} x'\\ y'\end{array}\right) + F = 0$$
Eliminating the matrices again (and writing ##x,y## instead of ##x', y'## for convenience), we get
$$8x^2 -2y^2 +8\sqrt{2}x+6\sqrt{2}y +3 = 0.$$
Completing the squares, we get
$$8(x + 1/\sqrt{2})^2 - 2(y -3/\sqrt{2})^2 =-8.$$
By a simple translation, that is changing ##(x + 1/\sqrt{2}, y - 3\sqrt{2})## by ##(x,y)##, we get
$$8x^2 - 2y^2 = -8.$$
This is a hyperbola