Determine is the set is a real vector space (and say why if it isn't)

Pi Face
Messages
76
Reaction score
0
-set of all nonnegative real numbers
-set of all upper triangular nxn matrices
-set of all upper triangular square matrices

from the book, the answers are: yes, no(need to be the same size to define addition), and yes

for the set of all nonnegative real numbers, doesn't it fail closure under scalar multiplication? if you multiply any number (except 0) in the set by a negative number, making it a negative number, wouldn't that new number be out of the initial set? thus making it not a vector space?

for upper triangular nxn matrices, why isn't it a vector space? nxn implies they are all the same size right? so when you add two of them together, you get another upper triangular nxn matrix, and multiplying them preserves this as well.

for all upper triagnular square matrices, why is it a real vector space? the set just specifices "square", not the size, so if you have two different sized triaangular matrices then you can't add them, failing closure under addition
 
Physics news on Phys.org
anyone have any idea?
 
I think you are right and the book is wrong, but since it's in a book, I could be missing something
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top