Determine the energies of the three lowest energy states.

qweazy
Messages
13
Reaction score
0

Homework Statement


A particle is confined to a two-dimensional box defined by the following boundary conditions: U(x, y) = 0 for \frac{-L}{2} ≤ x ≤ \frac{L}{2} and
\frac{-3L}{2} ≤ y ≤ \frac{3L}{2}, and U(x, y) = ∞ outside these ranges. Determine the energies of the three lowest energy states
Just want the setup right

Homework Equations


ψ(x,y,z)=Asin(k_{1}x)sin(k_{2}y)sin(k_{3}z)

The Attempt at a Solution


So I first started off with
ψ(x,y)=0 at x=\frac{L}{2} and y=\frac{3L}{2}

\Rightarrow k_{1}=\frac{2n_{1}π}{L} and k_{2}=\frac{2n_{2}π}{3L}

So then the energy =
\frac{h^{2}}{8π^{2}m}(k^{2}_{1}+k^{2}_{2})
=\frac{h^{2}}{8π^{2}m}(\frac{4n^{2}_{1}π^{2}}{L^{2}}+\frac{4n^{2}_{2}π^{2}}{9L^{2}})

π^{2} cancels out, factor out 4 and L^{2}

\frac{h^{2}}{2mL^{2}}(n^{2}_{1}+\frac{n^{2}_{2}}{9})

I have it wrong, but I don't know why
the actual one is

\frac{h^{2}}{8mL^{2}}(n^{2}_{1}+\frac{n^{2}_{2}}{9})
 
Physics news on Phys.org
You are not calculating the ground state energy! Your wave function is for the first excited state!

Note that there is a difference between boxes [0,L] and [-L/2, L/2]. In the former, the solution is A sin(kx), as B cos(kx) can't satisfy the boundary conditions (0 when x=0). In the latter case however, both solutions must be considered, and in fact, the ground state is the first cosine state.
 
Oh ok I see. I just thought that Asin(kx) applied for everything. It makes sense now, thanks for your help!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top