Determine the prime ideals of the polynomial ring C[x, y] in two variables

Simfish
Gold Member
Messages
811
Reaction score
2
So the problem is:
"4:(a) Determine the prime ideals of the polynomial ring C[x, y] in two variables."

"We recognize that an ideal P is prime if and only if for two ideals A and B, AB $\in$ P implies that either A or B is contained in P. So we must find "

So anyways, I'm thinking that it consists of all the irreducible polynomials in C[x,y] (I suppose those irreducibles can form ideals by means of multiples of those with other elements in the ring). (although we can't even categorize all the irreducibles in "

"Hm

First of all, standard irreducibility tests don't work
(because it's a complex domain, so (x^2 + 1) is reducible in this case). So then in C[X] at least we have polynomials of first degree that are irreducible..

So then we have to find irreducibles over complex numbers. BUT on the OTHER hand, we have xy, so now we can have irreducible factors of X and Y (maybe, irreducible polynomials can be elliptic curves like the one on Wikipedia)."

Y^2 - X^3 - X - 1 is prime ideal from wikipedia.
 
Physics news on Phys.org
There are a couple of ways you can approach this. One is to think about when C[x,y]/I is going to be an integral domain, and the other is to think about algebraic varieties.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top