I Determine whether ##125## is a unit in ##\mathbb{Z_471}##

  • I
  • Thread starter Thread starter chwala
  • Start date Start date
chwala
Gold Member
Messages
2,826
Reaction score
414
TL;DR Summary
Allow me to post the screen shot of what the text has indicated as the steps, ...which i cannot follow fully as they have talked of back-substitution.
This is the question,

1757886540613.webp


I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1.
My understanding of backwards substitution,

...
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##

## 109⋅ 28 ≡ 1 (\mod 471)##

Thus, the multiplicative inverse of 121 mod 471 is 109.

I want to understand the approach that the text used. Hence, my post. Cheers.
 
Last edited:
Physics news on Phys.org
The back-substitution in the context of the Euclidean algorithm is:
1=9-4⋅2,
2=29-3⋅9,
1=9-4⋅(29-3⋅9)=-4⋅29+13⋅9,
9=96-3⋅29,
1=-4⋅29+13⋅(96-3⋅29)=13⋅96-43⋅29,
29=125-1⋅96,
1=13⋅96-43⋅(125-1⋅96)=-43⋅125+56⋅96,
96=471-3⋅125,
1=-43⋅125+56⋅(471-3⋅125)=56⋅471-211⋅125=260⋅125.
 
chwala said:
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##
Although you have not used the standard step-by-step approach, your solution is also correct.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top