I Determine whether ##125## is a unit in ##\mathbb{Z_471}##

  • I
  • Thread starter Thread starter chwala
  • Start date Start date
chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR Summary
Allow me to post the screen shot of what the text has indicated as the steps, ...which i cannot follow fully as they have talked of back-substitution.
This is the question,

1757886540613.webp


I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1.
My understanding of backwards substitution,

...
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##

## 109⋅ 28 ≡ 1 (\mod 471)##

Thus, the multiplicative inverse of 121 mod 471 is 109.

I want to understand the approach that the text used. Hence, my post. Cheers.
 
Last edited:
Physics news on Phys.org
The back-substitution in the context of the Euclidean algorithm is:
1=9-4⋅2,
2=29-3⋅9,
1=9-4⋅(29-3⋅9)=-4⋅29+13⋅9,
9=96-3⋅29,
1=-4⋅29+13⋅(96-3⋅29)=13⋅96-43⋅29,
29=125-1⋅96,
1=13⋅96-43⋅(125-1⋅96)=-43⋅125+56⋅96,
96=471-3⋅125,
1=-43⋅125+56⋅(471-3⋅125)=56⋅471-211⋅125=260⋅125.
 
chwala said:
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##
Although you have not used the standard step-by-step approach, your solution is also correct.
 
Thks @Gavran ,I will check on your approach...
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top