Determine whether the system is linear

  • Thread starter Thread starter hanafnaf
  • Start date Start date
  • Tags Tags
    Linear System
hanafnaf
Messages
8
Reaction score
0
and how make check the linearity and shift invarient for the system

I want to determine whether the system is linear and shift invarientby steps

g(m,n) = f(m,-1) + f(m,0) + f(m,1)

g(x) = (integration from +infinety to - infinety) f(x,z) dz

please help me
Thanks alot
 
Physics news on Phys.org


hanafnaf said:
and how make check the linearity and shift invarient for the system

I want to determine whether the system is linear and shift invarientby steps

g(m,n) = f(m,-1) + f(m,0) + f(m,1)

g(x) = (integration from +infinety to - infinety) f(x,z) dz

please help me
Thanks alot

What can you tell us about how to test for linearity?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top