Determining a smooth motion when given a function

AI Thread Summary
The discussion centers on determining the smoothness of the function x(t) at specific points and intervals. The function is defined piecewise, and participants argue that it is not smooth at t = 1 and t = 2 because the first derivatives from the left and right do not match, indicating a lack of continuity in the derivative. The formula provided in the book, meant to demonstrate smoothness, is also questioned as it primarily addresses continuity. Graphical analysis supports the claim that the function's slope changes abruptly at the critical points, further confirming the absence of smoothness. Overall, the consensus is that the function does not meet the criteria for smoothness at the specified points.
vande060
Messages
180
Reaction score
0
Show from Eq. 1.1 that the below function is smooth at t = 1 and at t = 2. Is it smooth at any 1 < t < 2?

x(t) =

1.0 + 2.0 t 0 ≤ t ≤ 1
3 + 4(t − 1) 1 ≤ t ≤ 2
7 + 3(t − 2) 2 ≤ t




for equation 1.1 my book gives me:

lim
dt→0 [x(t + dt) − x(t) ]/dt= 0




This problem asks me to show that the motion is smooth, but to me it seems that it would not be smooth at points 1 and 2. the way i understand it, for a motion to be smooth all of the derivatives of x(t) must exist, but if i take the derivatives:

2 0 ≤ t ≤ 1
4 1 ≤ t ≤ 2
3 2 ≤ t

the derivatives at points 1 and 2 conflict, so i don't understand how this meets the requirements of a smooth function. i must be missing something obvious.

Also i was confused by the formula 1.1 in the book, it tell me to use this formula to show the motion is smooth, but then next to the formula in the book it states the formula as being one used to show a function is continuous.

Thank you in advance to anyone who responds.
 
Physics news on Phys.org
Curious question; probably should be over on one of the math forums.
What exactly is the definition of smooth? I graphed the function from 0 to 3 and it is continuous, but the first derivative does not exist at 1 and at 2 because the value of eqn 1.1 is different when you approach from the left or the right. We say the whole limit does not exist if the left limit is not equal to the right limit.
 
Delphi51 said:
Curious question; probably should be over on one of the math forums.
What exactly is the definition of smooth? I graphed the function from 0 to 3 and it is continuous, but the first derivative does not exist at 1 and at 2 because the value of eqn 1.1 is different when you approach from the left or the right. We say the whole limit does not exist if the left limit is not equal to the right limit.

thanks for the reply, the definition of a smooth motion, as given in my book, is : for a motion to be smooth all of the derivatives of x(t) must exist, but if i take the derivatives.

my intuition was that this function is not smooth, because points one and two have trouble with derivatives, any ideas? Again, my book asks me to show the motion as smooth, but i don't understand how it could be by the definition.
 
Definitely not smooth at 1 and 2. You can see that on the graph - the slope changes suddenly at those points, so no value can be assigned to the slope or first derivative at t = 1 or t = 2. Looks like the question got mixed up.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top