Determining exact solutions to a perturbed simple harmonic oscillator

Click For Summary
SUMMARY

The discussion focuses on determining the exact ground state energy and wave function of a perturbed simple harmonic oscillator, represented by the Hamiltonian H = H0 + λH1, where H0 is the unperturbed Hamiltonian and H1 is the perturbation. The perturbation is defined as H1 = k'x, and the factor λ is initially treated as a small number, later set to 1. The participants conclude that the potential energy can be shifted by completing the square, leading to a new Hamiltonian that retains the form of the original oscillator, with the ground state energy decreased by a constant amount and the wave functions shifted accordingly.

PREREQUISITES
  • Understanding of quantum mechanics, specifically Hamiltonians and perturbation theory.
  • Familiarity with simple harmonic oscillators and their properties.
  • Knowledge of ladder operators and their role in quantum mechanics.
  • Ability to solve differential equations related to quantum systems.
NEXT STEPS
  • Study the method of completing the square in quantum mechanics to analyze perturbed systems.
  • Learn about second-order perturbation theory and its applications in quantum mechanics.
  • Explore the properties of ladder operators in more depth, particularly in the context of harmonic oscillators.
  • Review Griffiths' "Introduction to Quantum Mechanics" for detailed explanations of Hamiltonians and perturbation methods.
USEFUL FOR

Students and professionals in quantum mechanics, particularly those studying perturbation theory, as well as physicists working with simple harmonic oscillators and their applications in various fields.

slimjim
Messages
11
Reaction score
0

Homework Statement


Consider as an unperturbed system H0 a simple harmonic oscillator with mass m,
spring constant k and natural frequency w = sqrt(k/m), and a perturbation H1 = k′x =
k′sqrt(hbar/2m)(a+ + a−)

Determine the exact ground state energy and wave function of the perturbed system


here a+ and a- are the ladder operators: a+/-=1/sqrt( 2hbar*m*ω)(-/+p^2 +(mωx) )

and H0=1/(2m)*(p^2 +(mωx)^2) = hbar*ω*[(a+)*(a-)+1/2]

The Attempt at a Solution




I just need a nudge in the right direction for this one. The questoin confuses me because I didnt realize exact solutions could be found for perturbed systems.

we want to solve Hψ=Eψ where H= H0 + λH1
(the unperturbed hamiltonian plus the perturbation)

I am confused about the factor of λ on H1.

griffiths text says " for the moment we'll take lambda to be a small number, later we'll crank it up to one, and H will be the true hamiltonian"

so should I take λ=1?

either way, when I write out Hψ=Eψ, i get a very nasty diff. eq. which leads me to believe there is a better method.
 
Physics news on Phys.org
slimjim said:

Homework Statement


Consider as an unperturbed system H0 a simple harmonic oscillator with mass m,
spring constant k and natural frequency w = sqrt(k/m), and a perturbation H1 = k′x =
k′sqrt(hbar/2m)(a+ + a−)

Determine the exact ground state energy and wave function of the perturbed system


here a+ and a- are the ladder operators: a+/-=1/sqrt( 2hbar*m*ω)(-/+p^2 +(mωx) )

and H0=1/(2m)*(p^2 +(mωx)^2) = hbar*ω*[(a+)*(a-)+1/2]

The Attempt at a Solution




I just need a nudge in the right direction for this one. The questoin confuses me because I didnt realize exact solutions could be found for perturbed systems.

we want to solve Hψ=Eψ where H= H0 + λH1
(the unperturbed hamiltonian plus the perturbation)

I am confused about the factor of λ on H1.

griffiths text says " for the moment we'll take lambda to be a small number, later we'll crank it up to one, and H will be the true hamiltonian"

so should I take λ=1?

either way, when I write out Hψ=Eψ, i get a very nasty diff. eq. which leads me to believe there is a better method.

Some systems can be solved exactly no matter how large the perturbation is. The potential energy in the hamiltonian is kx^2/2. The perturbation is k'x when lambda=1. You can complete the square in x to get a new hamiltonian with a shifted center and shifted energy that looks a lot like the first.
 
Dick said:
Some systems can be solved exactly no matter how large the perturbation is. The potential energy in the hamiltonian is kx^2/2. The perturbation is k'x when lambda=1. You can complete the square in x to get a new hamiltonian with a shifted center and shifted energy that looks a lot like the first.

I did as you suggested. The potential gets shifted left in x, and decreased by a constant amount.

Coincidentally, the potential is uniformly decreased by the same value I calculated for E2, the second order perturbation in energy.

So I am thinking that the exact ground state energy would be decreased by this amount as well.

And the wave functions would simply be shifted to the left (-x) by the same amount that the potential was shifted. (the wave func. should have same shape as the wavefunction for an unperturbed simple harmonic oscillator, and must also be normalized)
 
slimjim said:
I did as you suggested. The potential gets shifted left in x, and decreased by a constant amount.

Coincidentally, the potential is uniformly decreased by the same value I calculated for E2, the second order perturbation in energy.

So I am thinking that the exact ground state energy would be decreased by this amount as well.

And the wave functions would simply be shifted to the left (-x) by the same amount that the potential was shifted. (the wave func. should have same shape as the wavefunction for an unperturbed simple harmonic oscillator, and must also be normalized)

I haven't really done the perturbative calculation for a long time, but that sounds right.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
Replies
11
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K