Determining how to find the 2-d hilbert space from fusing ising anyons

Shinn497
Messages
7
Reaction score
0
Hello all,

I'm working through the following paper on topological quantum computing.

http://www.qip2010.ethz.ch/tutorialprogram/JiannisPachosLecture

In particular I'm trying to derive and solve the pentagon equation in order to evaluate the F matrices for ising anyons. One thing I'm trying to determine is how to determine, in general, which fusion paths can become a 2-d hilbert space. I understand that the fusion paths in figure 1.4a are analogues of the |0> |1>, and |+> |-> hilbert spaces but I don't get if there is a way to find any others...in general.

I think what would really help is equation 1.6, which determines the dimensional of of a set of anyons based on the fusion rules. BUT I'm not entirely sure how to read that equation. In particular I can't get how it is used to properly get the dimension of 3 σ anyons to be 2. I was able to prove it by drawing it out and doing the fusions but I couldn't use that one equation.

This is important because the pentagon identity is for 4 anyons. This means there are a 243 possible fusion paths. In the intermediate steps of the equation there are more. If there was a better way of determining which fusion paths are within the fusion rules that would be great.

Thanks for your help!

EDIT: I meant to say hilbert spaces in general they do not have to be 2-DSecondary question:

Why does braiding effect the fusion? This is the central idea to what makes quantum computation with anyons possible but I'm not getting it. I'll accept that anyons gain a phase when braided but I'm not sure how this phase effects the fusion outcome in general. In other words, can you explain figure 1.3?
 
Last edited:
Physics news on Phys.org
I believe I found my answer.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top