nkinar
- 74
- 0
Suppose that I have a function f(a,b,c,d) = g, where {a,b,c,d} are four independent variables and g is the dependent variable. Now let's say that I evaluate the function four times, each time using different inputs, and the function produces four different outputs:
f(a_1,b_1,c_1,d_1) = g_1
f(a_2,b_2,c_2,d_2) = g_2
f(a_3,b_3,c_3,d_3) = g_3
f(a_4,b_4,c_4,d_4) = g_4
Using a system of equations (linear or non-linear), is there a way to determine the values of the inputs a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2,a_3,b_3,c_3,d_3,a_4,b_4,c_4,d_4 if I know the function f(a,b,c,d) and the values of the outputs g_1,g_2,g_3,g_4 for these inputs?
What type of algorithm could I use to determine the values of the inputs? Is there a good reference available?
f(a_1,b_1,c_1,d_1) = g_1
f(a_2,b_2,c_2,d_2) = g_2
f(a_3,b_3,c_3,d_3) = g_3
f(a_4,b_4,c_4,d_4) = g_4
Using a system of equations (linear or non-linear), is there a way to determine the values of the inputs a_1,b_1,c_1,d_1,a_2,b_2,c_2,d_2,a_3,b_3,c_3,d_3,a_4,b_4,c_4,d_4 if I know the function f(a,b,c,d) and the values of the outputs g_1,g_2,g_3,g_4 for these inputs?
What type of algorithm could I use to determine the values of the inputs? Is there a good reference available?
Last edited: