Determining the energy radiated by gravitational waves in a simple system

  • Thread starter Thread starter rcatalang
  • Start date Start date
  • Tags Tags
    Gravitation
Click For Summary
SUMMARY

This discussion focuses on determining the energy radiated by gravitational waves (GWs) in a simplified two-mass system using Newtonian equations of motion and general relativity principles. The integral for energy radiated is expressed as $$\frac{1}{(GM)^2}\int_{t=0}^{t_f} (\dot{x}\ddot{x})^2 dt$$, and the dynamics are analyzed under the assumption of equal masses, leading to the expression for the quadrupole tensor $$I_{xx} = 2mx(t)^2$$. The discussion culminates in deriving the gravitational power $$P(x)$$ as a function of separation, which is essential for calculating the energy radiated by the system.

PREREQUISITES
  • Understanding of gravitational wave physics
  • Familiarity with Newtonian mechanics and equations of motion
  • Knowledge of general relativity and quadrupole radiation
  • Proficiency in calculus, particularly integration techniques
NEXT STEPS
  • Study the derivation of gravitational wave power from the quadrupole formula
  • Learn about the implications of the trace-free part of the quadrupole tensor $$\dddot{Q}_{ij}$$
  • Explore the relationship between energy radiated and the dynamics of two-body systems
  • Investigate numerical methods for solving complex integrals in gravitational wave physics
USEFUL FOR

Physicists, astrophysicists, and students studying gravitational waves, as well as researchers interested in the dynamics of two-body systems in the context of general relativity.

rcatalang
Messages
2
Reaction score
0
Homework Statement
We have two massive particles of mass ##m_1## and ##m_2## that approach each other from infinity up to a certain point, ##x_f##. One has to calculate the energy radiated through gravitational waves.
Relevant Equations
Equation of motion: ##\ddot{x}=\frac{-GM}{x^2}##.

Energy lost (disregarding constants): ##E\propto \int_{t=0}^{t_f} \frac{(\dot{x})^2}{x^4}##
I have tried simplifying the integral (turning into an integral in terms of position variables) using the equation of motion. It's easy to show:

$$\frac{1}{x^4}=\frac{(\ddot{x})^2}{(GM)^2} $$

And therefore one can write:

$$\frac{1}{(GM)^2}\int_{t=0}^{t_f} (\dot{x}\ddot{x})^2 dt = \frac{1}{(GM)^2}\int_{\infty}^{x_f} \dot{x}(\ddot{x})^2 dx $$

But I have no idea about how to continue further with this integral. Any ideas on how to solve this integral?
 
Physics news on Phys.org
Let me show you how to work this out. For brevity I'll just assume both masses are equal, ##m_1 = m_2 = m##, but you can easily re-scale the following results for the case of non-equal masses.

The idea is to assume that, since we're in linearized theory, the dynamics given by the Newtonian equations of motion are roughly correct. So consider the two masses to be at ##\pm x(t)## (and starting at ##\pm x_0##, which we'll later take to be infinity). The separation at time ##t## is just ##2x(t)##, and applying Newton III for either particle gives:$$m\ddot{x} = - \frac{Gm^2}{(2x)^2}$$You can multiply through by ##\dot{x}## and integrate both sides, which gets you something similar to an energy equation:$$ \frac{1}{2} \frac{d}{dt} (\dot{x}^2) = \frac{d}{dt} \left( \frac{Gm}{4x} \right)$$Using the initial conditions gives you:$$\dot{x}^2 = \frac{Gm}{2} \left( \frac{1}{x} - \frac{1}{x_0} \right)$$Now we return to general relativity briefly. The GW power is proportional to ##\dddot{Q}_{ij} \dddot{Q}_{ij}##, where ##Q_{ij}## is the trace-free part of the quadrupole tensor ##I_{ij}##, defined by:$$I_{ij} = \int \rho(\mathbf{x}) x_i x_j$$where ##\rho(\mathbf{x}) = m\delta(x(t)) + m\delta(-x(t))## in this case. You can see that this only has one non-zero component, ##I_{xx}##,$$I_{xx} = 2mx(t)^2$$So we'll need to find an expression for ##\dddot{I}_{ij}##. Churning out all three derivatives gives you:$$\dddot{I}_{xx} = 12m \dot{x} \ddot{x} + 4m x \ \dddot{x}$$That may look slightly unwieldy, but we do actually have everything we need. Recall that ##\ddot{x} = -GM/(4x^2)##, which you can differentiate again to get ##\dddot{x}##. If you plug everything in, you get\begin{align*}
\dddot{I}_{xx} = - \frac{GM \dot{x}}{x^2} = -\frac{GM}{x^2} \sqrt{\frac{GM}{2}} \sqrt{\frac{1}{x} - \frac{1}{x_0}}
\end{align*}Since this is a homework problem, you have do some work as well. What is the trace free part ##\dddot{Q}_{ij} = \dddot{I}_{ij} - \frac{1}{3} \mathrm{Trace}(\dddot{I}) \delta_{ij}##? Note that ##\dddot{Q}_{ij}## also has ##yy## and ##zz## components. Therefore what is the gravitational power ##P(x)## as a function of ##x##?

Once you have the power ##P(x)##, you can easily integrate$$dE = P(x) dt = P(x) \frac{1}{\dot{x}} dx$$since we know ##\dot{x}## as a function of ##x##...
 
Last edited:
  • Like
Likes   Reactions: PhDeezNutz

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
793
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K