opticaltempest
- 135
- 0
I have the following sequence
<br /> <br /> \begin{array}{l}<br /> a_n = ( - 1)^n \left( {\frac{n}{{n + 1}}} \right) \\ <br /> \\ <br /> \mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \\ <br /> \end{array}<br />
Direct substitution yields <br /> ( - 1)^\infty \left( {\frac{\infty }{\infty }} \right)<br />
I tried manipulating it into a form in which I could apply L'Hopital's Rule.
\displaylines{<br /> {\rm Let y} = \mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr <br /> \cr <br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr <br /> \cr <br /> = \mathop {\lim }\limits_{n \to \infty } \left[ {\ln ( - 1)^n + \ln (n) - \ln (n + 1)} \right] \cr <br /> \cr <br /> = \mathop {\lim }\limits_{n \to \infty } \left[ {n\ln ( - 1) + \ln (n) - \ln (n + 1)} \right] \cr <br /> \cr <br /> \ln ( - 1) = undefined \cr}
The answer is below. How did the book arrive at that answer? How did they go through and calculate the limit? Solutions manuals are so wonderfully detailed :)
http://img70.imageshack.us/img70/7812/answer5ck.jpg
<br /> <br /> \begin{array}{l}<br /> a_n = ( - 1)^n \left( {\frac{n}{{n + 1}}} \right) \\ <br /> \\ <br /> \mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \\ <br /> \end{array}<br />
Direct substitution yields <br /> ( - 1)^\infty \left( {\frac{\infty }{\infty }} \right)<br />
I tried manipulating it into a form in which I could apply L'Hopital's Rule.
\displaylines{<br /> {\rm Let y} = \mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr <br /> \cr <br /> \ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr <br /> \cr <br /> = \mathop {\lim }\limits_{n \to \infty } \left[ {\ln ( - 1)^n + \ln (n) - \ln (n + 1)} \right] \cr <br /> \cr <br /> = \mathop {\lim }\limits_{n \to \infty } \left[ {n\ln ( - 1) + \ln (n) - \ln (n + 1)} \right] \cr <br /> \cr <br /> \ln ( - 1) = undefined \cr}
The answer is below. How did the book arrive at that answer? How did they go through and calculate the limit? Solutions manuals are so wonderfully detailed :)
http://img70.imageshack.us/img70/7812/answer5ck.jpg
Last edited by a moderator: