(adsbygoogle = window.adsbygoogle || []).push({}); Determining what value "y" will approach eventually

I'm having a bit of trouble with an equilibrium problem. The autonomous equation given is:

y' = (2y+8)(y-3)(y-8)^3

The first task is to find and classify the stability of each equation, which I've done.

Points: y=-4, y=3, y=8

The bit that I am unsure of how to do comes next.

a.) If y(8) =-10, to what value will y approach eventually?

b.) If y(-4) = 8, to what value will y approach eventually?

I've seen it done with direction fields, but I've never really understood those.. I've also heard that there is a way to determine what value y will approach without actually solving the differential equation.

Can anyone help?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Determining what value y will approach eventually

**Physics Forums | Science Articles, Homework Help, Discussion**