A Developing the Feynman diagram expansion

ShayanJ
Science Advisor
Insights Author
Messages
2,801
Reaction score
606
TL;DR Summary
Trying to figure out Feynman rules from expansion of the generating functional.
I'm reading "introduction to many body physics" by Piers Coleman. In section 7.2 he's trying to introduce Feynman diagrams by expanding the generating functional. But first he transforms it into this pictorial form:
16005897616301785018040.jpg

Then he calculates the n=1, m=1 term like below:
1600589855368-1948804519.jpg

Which I understand. But I have no idea how he calculates the n=1, m=2 term:
1600590043927788924167.jpg


Can anybody help?
Thanks

PS
d1 and 1 mean ##dt_1 dx_1## and ##(t_1,x_1)##
 
Physics news on Phys.org
I figured it out. It was a simple application of the chain rule. I'm really rusty!
$$ \int d1 U(1) \frac{\delta^2}{\delta\alpha \delta\bar \alpha}\left( \int dX dY \bar\alpha(X) G(X-Y) \alpha(Y)\right)^2 = \\ 2 \int d1 U(1) \frac{\delta}{\delta\alpha} \left[\left( \int dX dY \bar\alpha(X) G(X-Y) \alpha(Y)\right) \left( \int dY G(1-Y) \alpha(Y)\right)\right] $$
And so on and so fourth!
 
  • Like
Likes Quarkman1 and vanhees71
As Kipling wrote "You're a better man than I, Gunga Din!" :smile: I like that you wrote it out and explained what you found. I am extremely rusty. The chain rule is something I need to read up on more, I think it would help me sort of get the grasp of many of the equations, especially with expansions, etc.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top