Diagonalizable Proof Homework: True or False?

  • Thread starter Thread starter metder
  • Start date Start date
  • Tags Tags
    Proof
metder
Messages
5
Reaction score
0

Homework Statement



Let V be the space of n X n matrices over F. Let A be a fixed n X n matrix
over F. Let T and U be the linear operators on V defined by
T(B) = AB
U(B) = AB - BA.
1. True or false? If A is diagonalizable (over F), then T is diagonalizable.
2. True or false? If A is diagonalizable, then U is diagonalizable
Thanks for the help.



The Attempt at a Solution


I'm guessing that 1 is true and 2 is false. I'm not sure, since these are linear operators rather than simple matrices.
 
Physics news on Phys.org
Consider, first, the case in which A is diagonal. What do T and U do to the "basis" matrices?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top