Did i developed these teylor series correctly

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Series
transgalactic
Messages
1,386
Reaction score
0
A.
<br /> sin^2 x=0+x^2-\frac{x^4}{3!}+\frac{(-1)^{2n}}{{(2n+1)!}^2}{x^{4n+2}}+O(4n+2)<br />
B.
<br /> xe^x=x+x^2+\frac{x^3}{2!}+\frac{x^4}{3!}++\frac{x^{n+1}}{n!}+O(n+1)<br />
C.
<br /> xsin^3 x=0+x^4-\frac{x^6}{3!}+\frac{(-1)^{2n}}{{(2n+1)!}^2}{x^{5n+6}}+O(5n+4)<br />
 
Last edited:
Physics news on Phys.org
A:
<br /> cos 2x=cos^2x-sin^2x=1-2sin^2x\\<br />
<br /> f(x)=sin^2x=\frac{1-cos 2x}{2}\\<br />
<br /> f(0)=0\\<br />
<br /> f&#039;(x)=\frac{1-cos 2x}{2}=cos 2xsin2x=\frac{sin4x}{2}\\<br />
<br /> f&#039;(0)=0\\<br />
<br /> f&#039;&#039;(x)=2cos4x\\<br />
<br /> f^{(3)}=-8sin4x\\<br />
<br /> f^{(4)}=-32cos4x\\<br />
i know to to use each derivative to build a member out of it.
how to defne the n'th member??

regarding b:
<br /> xe^x=x+x^2+\frac{x^3}{2!}+\frac{x^4}{3!}++\frac{x^{n+1}}{n!}+O(n+1)<br />
i am sure that its correct because i took the series for e^x and multiplied eah member by x.
so the only error that could be is with the remainder .
i thought that if we multiply the remainder by x we add 1 to it
where is my mistake??

regarding C:
<br /> sin3x=3sinx-4sin^3x\\<br />
<br /> f(x)=sin^3x=\frac{3sinx-sin3x}{4}\\<br />
<br /> f(0)=0\\<br />
<br /> f&#039;(x)=\frac{3cosx-\frac{cos3x}{3}}{4}\\<br />
<br /> f&#039;(0)=0<br />
<br /> f&#039;&#039;(x)=\frac{-3sinx-\frac{sin3x}{9}}{4}\\<br />
<br /> f&#039;&#039;(0)=0<br />
for every member i get 0
??

did i solved A,B correctly
where is my mistake for C

??
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top