1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Did I do this right?

  1. Nov 3, 2004 #1

    AKG

    User Avatar
    Science Advisor
    Homework Helper

    I posted these a while back, I just wanted to be certain I did it right before I hand it in:

    ---------------------------------

    Question 1

    Suppose that h : [itex]\mathbb{R} \to \mathbb{R}[/itex] is continuous. Calculate f', if f : [itex]\mathbb{R}^2 \to \mathbb{R}[/itex] is the function:

    [tex]f(x, y) = \int _{\sin (xy)} ^{\cos (xy)} h(t)dt[/tex]


    Question 2

    Let

    [tex]f(x,y)=\left\{\begin{array}{cc}\frac{x^4 + y^4}{x^2 + y^2},&\mbox{ if }
    (x,y)\neq (0,0)\\0, & \mbox{ if } (x,y) = (0,0)\end{array}\right[/tex]

    Show that f is differentiable at (0,0)

    ---------------------------------

    Question 1

    [tex]f' = \left [D_1f(x, y) \ \ \ \ D_2f(x, y)\right ][/tex]

    [tex]f' = \left [\frac{\partial}{\partial x}\int_{\sin (xy)} ^{\cos (xy)} h(t)dt \ \ \ \ \frac{\partial}{\partial y}\int_{\sin (xy)} ^{\cos (xy)} h(t)dt\right ][/tex]

    Let H be the antiderivative of h (which exists because h is continuous), then:

    [tex]f' = \left [\frac{\partial}{\partial x}\left ( H(\cos xy) - H(\sin xy) \right ) \ \ \ \ \frac{\partial}{\partial y}\left ( H(\cos xy) - H(\sin xy)\right ) \right ][/tex]

    [tex]f' = -\left [y(\sin (xy)h(\cos (xy)) + \cos (xy)h(\sin (xy))) \ \ \ \ x(\sin (xy)h(\cos (xy)) + \cos (xy)h(\sin (xy)))\right ][/tex]


    Question 2

    Proposition: f is differentiable at (0, 0), and the derivative at that point is the zero transformation.

    Proof:

    It suffices to show that:

    [tex]L = 0[/tex]

    Where [itex]h = (h_1, h_2) \in \mathbb{R}^2[/itex], and:

    [tex]L = \lim _{h \rightarrow 0} \frac{|f(h)|}{|h|}[/tex]

    If [itex]h_1 = 0[/itex] and [itex]h_2 \neq 0[/itex], then:

    [tex]L = \lim _{h \rightarrow 0} \frac{h_2^4}{|h_2^3|} = \lim _{h \rightarrow 0} |h_2| = 0[/tex]

    Clearly, if [itex]h_1 \neq 0[/itex] and [itex]h_2 = 0[/itex], then we also have that L = 0. Now, if neither component of h is zero, then:

    [tex]L = \lim _{h \rightarrow 0} \frac{|h_1^4 + h_2^4|}{(h_1^2 + h_2^2)^{3/2}}[/tex]

    [tex]L = \lim _{h \rightarrow 0} \frac{|(h_1^2 + h_2^2)^2 - 2h_1^2h_2^2|}{(h_1^2 + h_2^2)^{3/2}}[/tex]

    [tex]L = \lim _{h \rightarrow 0} \left ||h| - \frac{2h_1^2h_2^2}{(h_1^2 + h_2^2)^{3/2}} \right |[/tex]

    [tex]L = 2\lim _{h \rightarrow 0} \frac{h_1^2h_2^2}{(h_1^2 + h_2^2)^{3/2}}[/tex]

    [tex]L = 2\lim _{h \rightarrow 0} |h| \left (\frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

    Now, consider the function [itex]g(z) = z + z^{-1}[/itex] for positive [itex]z \in \mathbb{R}[/itex]. Simple analysis shows that g reaches a minimum at 2, so:

    [tex]z + \frac{1}{z} \geq 2[/tex]

    Now, let [itex]|h_1||h_2|^{-1} = z[/itex]:

    [tex]\frac{|h_1|}{|h_2|} + \frac{|h_2|}{|h_1|} \geq 2[/tex]

    [tex]h_1^2 + h_2^2 \geq 2|h_1||h_2|[/tex]

    [tex]\frac{1}{2} \geq \frac{|h_1||h_2|}{h_1^2 + h_2^2}[/tex]

    [tex]\frac{1}{4} \geq \left ( \frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

    [tex]2|h|\frac{1}{4} \geq 2|h|\left ( \frac{h_1h_2}{h_1^2 + h_2^2} \right )^2[/tex]

    So:

    [tex]L \leq \frac{1}{2}\lim _{h \rightarrow 0} |h| = 0[/tex]

    Clearly, |f(h)| and |h| are non-negative, so:

    [tex]0 \leq \lim _{h \rightarrow 0} \frac{|f(h)|}{|h|} = L \leq 0[/itex]

    This proves that f is indeed differentiable at (0, 0), and 0 (the zero transformation) is its derivative there. Q.E.D.
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted



Similar Discussions: Did I do this right?
Loading...