Sparky_
- 227
- 5
Homework Statement
In an L-R-C circuit, L = 1, R = 2, C = 0.25, E(t) = 50 cos(t)
Find the steady state solution
Homework Equations
The Attempt at a Solution
L \frac {di(t)}{dt} + R \frac {dq(t)}{dt} + \frac {q}{C} = 50cos(t)
\frac {di(t)}{dt} + 2 \frac {dq(t)}{dt} + 4q = 50cos(t)
q(t) = e^{-t}(c1cos(sqrt(12)t + c2sin(sqrt(12)t)
next annihilate 50*cos(t)
(D^2 +1) (D^2 + 2D + 4) = (D^2 +1)50cos(t)
roots = +/- i
qp(t) = Acos(t) + Bsin(t)
[-Acos(t) - Bsin(t)] - 2Asin(t) + 2Bcos(t) + 4Acos(t) + 4Bsin(t) = 50cos(t)
cos(t)[-A+2B+4A] + sin(t)[-B-2A+4B] = 50cos(t)
3A+2B = 50
3B-2A = 0
A = \frac {150}{13}
B = \frac {100}{13}
qp(t) = \frac {150}{13}cos(t) + \frac {100}{13}sin(t)
The book gets
qp(t) = \frac {100}{13}cos(t) - \frac {150}{13}sin(t)
I'm off with swapped coefficients and the sign.
Do I have something crossed?
Where is my error?
Thanks
-Sparky
Last edited: