In Elements of the Theory of Functions and Functional Analysis (Kolmogorov and Fomin) the definitions are as follows:(adsbygoogle = window.adsbygoogle || []).push({});

An open sphere [itex]S(x_0,r)[/itex] in a metric space [itex]R[/itex] (with metric function [itex]\rho(x,y)[/itex]) is the set of all points [itex]x\in R[/itex] satisfying [itex]\rho(x,x_0)<r[/itex]. The fixed point [itex]x_0[/itex] is called thecenter; the number [itex]r[/itex] is called theradius.

An ε-neighbourhood of the point [itex]x[/itex], denoted [itex]O(x,\epsilon)[/itex], is an open sphere of radius ε and center [itex]x_0[/itex].

How is the ε-neighbourhood a significant definition? It seems to be just the open sphere with a different radius symbol. If we have a neighbourhood of a point [itex]x[/itex] (as per the definition) does this [itex]x[/itex] have to lie within the open sphere? I mean, I assume it must, but this doesn't seem to be captured by the definition. What am I missing?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Difference between open sphere and epsilon-neighbourhood - Metric Spaces

**Physics Forums | Science Articles, Homework Help, Discussion**