You haven't given us what your definitions of R-algebra and R-module are. What mathwonk said could be taken as definitions.
I'm going to assume that when you say a X is an R-algebra or an R-module, then you're thinking of R acting on X in an appropriate way. So if x is in X and r is in R, then we can look at the element "rx" that sits in the R-algebra/module X.
Now if S is an R-algebra, then one can define a map f:R->S by setting f(r)=r1 (where 1 is the identity element of S). You can easily check that f is a ring homomorphism (and that the image of f lies in the center of S). In this way an R-algebra structure on S is a ring homomorphism from R into the center of S.
And if M is an R-module, then for each r in R one can define a map f_r:M->M by setting f_r(m)=rm. This is easily seen to be a group endomorphism of the abelian group M, i.e. f_r lies in the ring End(M). Then if we let g:R->End(M) be defined by g(r)=f_r, we see that g is a ring homomorphism. In other words, R acts on M as endomorphisms of M.
Like I said, all this can be used to define R-algebras and R-modules. Try to prove that these definitions are equivalent to what you have.
As for references, any algebra book should talk about this stuff, see e.g. Dummit & Foote, Hungerford, Lang, ...