Difference between second moment of area and section modulus

AI Thread Summary
The discussion clarifies the difference between the second moment of area and the mass moment of inertia, both commonly referred to as "moment of inertia." The mass moment of inertia relates to the dynamics of bodies in motion, influencing how they respond to applied torque, while the second moment of area is crucial in structural engineering for analyzing beam bending. The second moment of area helps determine bending stress in beams using the formula σ = M y / I, where I represents the second moment of area. The section modulus, derived from the second moment of area, simplifies calculations for maximum bending moments and stresses. Understanding these distinctions is essential for effectively assessing beam strength and performance under load.
Peter10
Messages
10
Reaction score
0
Hi everyone!

Please help, I have spent some considerable time to understand the two concepts and still this is nagging at me... I am relating to Structural Engineering, just to let you know guys. My question is ..
Moment of inertia is about distribution of mass, the further away from the axis the higher the resistance to applied moment ( I believe I know the concepts of angular acceleration and etc.). Likewise in case of Elastic Section Modulus if the distribution of area of section is larger away from the axis the resistance to elastic deformation is greater... So in terms of Structural Engineering what is the difference between the two? I know that moment of inertia is related to mass (althou it is in cm^4 which is brings another question, why is it not in kg?), but as in practical sense why do we need one or the other to determine the strength of the beam, let's say up to elastic limit?
 
Engineering news on Phys.org
Peter10 said:
Hi everyone!

Please help, I have spent some considerable time to understand the two concepts and still this is nagging at me... I am relating to Structural Engineering, just to let you know guys. My question is ..
Moment of inertia is about distribution of mass, the further away from the axis the higher the resistance to applied moment ( I believe I know the concepts of angular acceleration and etc.). Likewise in case of Elastic Section Modulus if the distribution of area of section is larger away from the axis the resistance to elastic deformation is greater... So in terms of Structural Engineering what is the difference between the two? I know that moment of inertia is related to mass (althou it is in cm^4 which is brings another question, why is it not in kg?), but as in practical sense why do we need one or the other to determine the strength of the beam, let's say up to elastic limit?
You are confusing two different concepts, namely the second moment of area and the mass moment of inertia, which are unfortunately and inaccurately known by the grab-all term "moment of inertia".

Let's take the "mass moment of inertia" of a body first.

We know from Newton's laws of motion that it takes a certain applied effort to change the motion of a body. For bodies in rectilinear motion, the equation F = ma describes how the acceleration of a body of mass m will change when a certain external force F is applied.

For bodies in rotational motion, the corresponding equation is T = J α, where J is the mass moment of inertia of the body (and which has units of ML2) and α is the angular acceleration (units of radians per second2) produced by the applied torque T (units of force times distance, or M × L × T-2 × L = ML2T-2). The mass moment of inertia J is an intrinsic property of the body, the value of which is influenced by the distribution of mass about the center of gravity.

The mass moment of inertia is used to calculate the dynamics of bodies undergoing motion.

The other moment of inertia, the second moment of area, is the one which is most commonly encountered in structural engineering. The second moment of area, usually denoted as I, arises from studying the bending of beams. The bending stress σ in a beam is given by the equation σ = M y / I, where M is the applied bending moment, y is the distance from the neutral axis to where the bending stress is sought, and I is the second moment of area of the cross section of the beam. This inertia is roughly analogous to J in that it describes the distribution of section area about the centroid of the section. The units of I are A × L2 (compare the units of J = M × L2), which is why tables of structural properties have units like cm4.

In beam analysis, the maximum bending stress is encountered at the outer fiber of the beam, which is located at the greatest distance from the neutral axis.

Thus for a given structural section, I can be calculated and y is known from the geometry, so the bending stress formula can be re-written as σ = M / SM, where SM is the section modulus of the beam cross section and SM = I / y (units of L3. By knowing the section modulus of a beam at a given location, it is thus a simple calculation to find out how much bending moment will produce a given level of bending stress. If you take a beam with a limiting elastic stress σ, then the maximum bending moment is M = σ × SM.
 
Thank you!
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top