Differentatiation & integration

  • Thread starter Thread starter traderz
  • Start date Start date
  • Tags Tags
    Integration
traderz
Messages
1
Reaction score
0

Homework Statement



1) y=arccos (cos x) - e^Lnx^2 find dy/dx

2) y=(lnx)^2- lnx^2 find dy/dx

3) Given y=x^3 and y^2=x

a) Calculate the points of intersection
b) Make a neat sketch to show the area enclosed between the two graphs (indicate the points of intersection & the representative strip)
c) Calculate the magnitude of the area in question (b)
d)Calculate the volume generated when the area in (b) rotates about the x axis



Homework Equations


1) y=arccos (cos x) - e^Lnx^2 find dy/dx

2) y=(lnx)^2- lnx^2 find dy/dx


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
What have you done so far?
 
According to the rules you have probably agreed to by signing in, you must first post your work on solving the problems and only then help (if needed) might come.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top