Differentiability of piece-wise functions

Click For Summary
The discussion centers on the differentiability of a piecewise function defined as y=sin(x) for x≠0 and y=x^2 for x=0. The key point is that at x=0, the derivative of sin(x) is 0, while the derivative of x^2 is also 0, leading to confusion about the function's differentiability. One participant argues that since y=x^2 is only defined at a single point, it does not affect the overall differentiability of the function, which remains differentiable. However, others clarify that this piecewise definition does not introduce a new function, as it behaves like sin(x) at all points except x=0, making the entire function differentiable. The conclusion is that the function is indeed differentiable at x=0.
15adhami
Messages
6
Reaction score
0
Hello,
Me and my friend were talking about differentiability of some piece-wise functions, but we thought of a problem that we could were not able to come to an agreement on. If the function is:
y=sin(x) for x≠0
and
y=x^2 for x=0,
Is this function differentiable? The graph looks like a normal sin graph, but the derivative at x=0 is 0, although on the graph it looks like 1. I thought that because y=x^2 at only 1 point, you cannot get the derivative at x=0 because there wouldn't be a dx or a dy, as there is no change in the function. So I thought that it would default to the derivative of sin(x), making the whole function differentiable. My friend thought that it is not differentiable. What is the correct answer? Thank you.
 
Physics news on Phys.org
15adhami said:
Hello,
Me and my friend were talking about differentiability of some piece-wise functions, but we thought of a problem that we could were not able to come to an agreement on. If the function is:
y=sin(x) for x≠0
and
y=x^2 for x=0,
Is this function differentiable? The graph looks like a normal sin graph, but the derivative at x=0 is 0, although on the graph it looks like 1. I thought that because y=x^2 at only 1 point, you cannot get the derivative at x=0 because there wouldn't be a dx or a dy, as there is no change in the function. So I thought that it would default to the derivative of sin(x), making the whole function differentiable. My friend thought that it is not differentiable. What is the correct answer? Thank you.
In which point(s) has the function y a different value than the sine function?
The answer to that question should give you a clue.
 
15adhami said:
Hello,
Me and my friend were talking about differentiability of some piece-wise functions, but we thought of a problem that we could were not able to come to an agreement on. If the function is:
y=sin(x) for x≠0
and
y=x^2 for x=0,
Is this function differentiable? The graph looks like a normal sin graph, but the derivative at x=0 is 0, although on the graph it looks like 1. I thought that because y=x^2 at only 1 point, you cannot get the derivative at x=0 because there wouldn't be a dx or a dy, as there is no change in the function. So I thought that it would default to the derivative of sin(x), making the whole function differentiable. My friend thought that it is not differentiable. What is the correct answer? Thank you.

There's no such thing as a piecewise function. A function is a function.
 
15adhami said:
Hello,
Me and my friend were talking about differentiability of some piece-wise functions, but we thought of a problem that we could were not able to come to an agreement on. If the function is:
y=sin(x) for x≠0
and
y=x^2 for x=0,
You realize that 0^2= 0, don't you? So this function is no different from a sine function. That derivative at 0 is NOT 0. You cannot take derivatives that way. You can say "since y= x^2, its derivative is 2x" only on the interior of some interval on which y is defined like that. Here, y is not defined as x^2 on any interval, just at a single point. You are just saying "y(0)= 0" which was already true from y= sin(x).

If you were to define y= sin(x) for x< -a or x> b, y= x^2 for -a< x< b, then the derivative of y would be 2x for -a< x< b and, in particular, y'(0) would be equal to 0. This function would be neither differentiable nor continuous at x= -a nor x= b.

Is this function differentiable? The graph looks like a normal sin graph, but the derivative at x=0 is 0, although on the graph it looks like 1. I thought that because y=x^2 at only 1 point, you cannot get the derivative at x=0 because there wouldn't be a dx or a dy, as there is no change in the function. So I thought that it would default to the derivative of sin(x), making the whole function differentiable. My friend thought that it is not differentiable. What is the correct answer? Thank you.
 
PeroK said:
There's no such thing as a piecewise function. A function is a function.
But there are piecewise-defined functions, which is what the OP meant, I'm sure.
$$f(x) = \begin{cases} \sin(x), & x \ne 0 \\ x^2, & x = 0 \end{cases}$$

For reasons already explained, this definition is silly, as it is no different from the ordinary sine function.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K