Differential Equations mixing sugar and water

hocuspocus102
Messages
44
Reaction score
0

Homework Statement



A tank contains 2860 L of pure water. A solution that contains 0.04 kg of sugar per liter enters a tank at the rate 5 L/min The solution is mixed and drains from the tank at the same rate. Find the amount of sugar in the tank after t minutes.

Homework Equations





The Attempt at a Solution



Obviously it starts with 0 kg sugar and an initial condition at time t = 0.
The rate then would be equal to (the rate entering) - (the concentration exiting).
Entering = .04*5 = .2
Exiting = (Y*5)/2860 = Y/572

dY/dt = .2 - Y/527
dY/(.2 - Y/572) = dt
integrate both sides
-572ln(.2-Y/572) = t + C
simplify
ln(.2 - Y/572) = -t/572 + C
.2 - Y/572 = e^(-t/572+C)
-Y/572 = Ce^(-t/572) - .2
Y = Ce^(-t/572) + 114.4
initial value t = 0 and Y = 0
0 = Ce^(-0/572) + 114.4
C = -114.4
so Y = 114.4 - 114.4e^(-t/572)

Is this right because I've done it a bunch of times and keep getting the same answer, but it's an online problem and it tells me that it's wrong and I can't figure out what I did incorrectly. Thanks!
 
Physics news on Phys.org
I don't see anything wrong with your solution. Beats me why the online thing won't take it.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top