Sorry i wasnt able to get help in the hw department. figured id try here.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

For a coordinate patch x: U--->[tex]\Re^{3}[/tex]show that[tex]u^{1}[/tex]is arc length on the [tex]u^{1}[/tex] curves iff [tex]g_{11} \equiv 1[/tex]

3. The attempt at a solution

So i know arc legth of a curve [tex]\alpha (t) = \frac{ds}{dt} = \sum g_{ij} \frac {d\alpha^{i}}{dt} \frac {d\alpha^{j}}{dt}[/tex] (well thats actually arclength squared but whatever).

But im not sure how to write this for just a [tex]u^{1}[/tex] curve. A [tex]u^{1}[/tex] curve throught the point P= x(a,b) is [tex]\alpha(u^{1})= x(u^{1},b)[/tex]

But i have no idea how to find this arclength applies to u^1 curves.

Furthermore i know some stuff about our metric [tex]g_{ij}(u^{1}, u^{2})= <x_{i}(u^{1}, u^{2}), x_{j}(u^{1}, u^{2})[/tex]

But i do not know how to use that to show that u^1 must be arclength but here is what i have so far:

[tex]g_{11}(u^{1}, b)= <x_{1}(u^{1}, u^{2}), x_{2}(u^{1}, u^{2})>[/tex] We know that [tex]x_{1}= (1,0)[/tex] and that is as far as i got :/

Any help appreciated.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differential Geometry: Coordinate Patches

Loading...

Similar Threads for Differential Geometry Coordinate | Date |
---|---|

A A question about coordinate distance & geometrical distance | Jul 19, 2016 |

A Manifolds: local & global coordinate charts | Jul 8, 2016 |

Non-Euclidean geometry and the equivalence principle | Jan 31, 2016 |

Ricci rotation coefficients and non-coordinate bases | Sep 21, 2015 |

Local parameterizations and coordinate charts | Jun 23, 2015 |

**Physics Forums - The Fusion of Science and Community**