Finding dy/dx: Differentiating (4sinx)(cosy)=1 with respect to x

  • Thread starter Thread starter the_ace
  • Start date Start date
  • Tags Tags
    Differentiate
the_ace
Messages
7
Reaction score
0
. differentiate (4sinx)(cosy)=1 w.r.t x and fine dy/dx


Im stuck here

(4cos x)(cos y)+ (4sin x)(-sin dy/dx[y])
 
Physics news on Phys.org


Differentiating (4sinx)(cosy)=1 w.r.t. x:

4cos(x)cos(y)-4sin(x)sin(y)*dy/dx = 0 since the derivative of 1 is a constant.

is what you'll get, not whatever you wrote. you differentiate the whole function first, then multiply it with the derivative of the function inside.

Now, just solve for dy/dx.
 


why its -4sin(x)sin(y)*dy...
Whts its negative 4 not PLUS!
 


When you differentiate cos y, you get -siny. I just brought the negative sign out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top