How do I find the derivative of d(x(t)2)/dt?

  • Thread starter Thread starter tomwilliam
  • Start date Start date
  • Tags Tags
    Differentiation
tomwilliam
Messages
141
Reaction score
2

Homework Statement


d(x(t)2)/dt


Homework Equations





The Attempt at a Solution



I guess that this should be:

2x(dx/dt)
but I'm not sure how to justify it:
u= x
d(u2)/du = 2u

(d(u2)/du)(du/dt) = d(u2)/dt

So 2u(du/dt) = 2x(dx/dt)
Is this right?
 
Physics news on Phys.org
Yes, that's just the chain rule.
 
hi tomwilliam! :smile:

you don't need to use substitution …

just say d(x(t)2)/dt = d(x(t)2)/d(x(t)) d(x(t))/dt = 2x dx/dt :wink:
 
Oh yes. Thanks for that.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top