Differentiation, Product Rule 3-terms

RaptorsFan
Messages
12
Reaction score
0

Homework Statement



f(x) = (2x-1)(3x-2)(5x+1) d/dx = ?

Note that I am letting (2x-1)(3x-2) = f and 5x+1 = g

Homework Equations



d/dx (fg) = f d/dx g + g d/dx f

The Attempt at a Solution



d/dx y = (2x-1)(3x-2)d/dx(5x+1)+(5x+1)d/dx((2x-1)(3x-2))

= (2x-1)(3x-2)(5)+ (5x+1)(2x-1)d/dx(3x-2)+(3x-2)d/dx(2x-1)
= 5(2x-1)(3x-2) + 3(5x+1)(2x+1) + 2(3x-2)

Can someone validate this answer for me?
 
Physics news on Phys.org
RaptorsFan said:

Homework Statement



f(x) = (2x-1)(3x-2)(5x+1) d/dx = ?

Note that I am letting (2x-1)(3x-2) = f and 5x+1 = g

Homework Equations



d/dx (fg) = f d/dx g + g d/dx f

The Attempt at a Solution



d/dx y = (2x-1)(3x-2)d/dx(5x+1)+(5x+1)d/dx((2x-1)(3x-2))

= (2x-1)(3x-2)(5)+ (5x+1)(2x-1)d/dx(3x-2)+(3x-2)d/dx(2x-1)
missed a bracket here, should be
= (2x-1)(3x-2)(5)+ (5x+1)[(2x-1)d/dx(3x-2)+(3x-2)d/dx(2x-1)]
RaptorsFan said:
[
= 5(2x-1)(3x-2) + 3(5x+1)(2x+1) + 2(3x-2)

Can someone validate this answer for me?

final answer looks good to me though, could always check by expanding it out

now that you know it you can make the jump

say
y = fgh

then
y' = f'(gh) + f(gh)' = f'gh + fg'h + fgh'
 
Last edited:
Thank you for the quick response.. much appreciated.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top