QuarkCharmer
- 1,049
- 3
Homework Statement
\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}}dx
Solve the integral and determine if it converges/diverges ect.
Homework Equations
The Attempt at a Solution
\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}}dx
\lim_{t \to 0}\int_{-1}^{t} \frac{e^{\frac{1}{x}}}{x^{3}}dx
u = \frac{1}{x}
du = \frac{1}{x^{2}}dx
\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{e^{u}(-x^{2})}{x^{3}}du
\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{-e^{u}}{x} du
x = \frac{1}{u}
\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{-e^{u}}{\frac{1}{u}} du
\lim_{t \to 0} \int_{-1}^{\frac{1}{t}} -e^{u}u du
v = u
dv = du
w = -e^{u}
dw = -e^{u}du
\lim_{t \to 0} (-e^{u}u)_{-1}^{\frac{1}{t}} - \int_{-1}^{\frac{1}{t}} -e^{u}du
\lim_{t \to 0} (\frac{-e^{\frac{1}{t}}}{t} + e^{-1}(-1)) - (-e^{\frac{1}{t}}+e^{-1})
\lim_{t \to 0} (\frac{-e^{\frac{1}{t}}}{t}-e^{-1}) + e^{\frac{1}{t}}-e^{-1}
\lim_{t \to 0} (e^{\frac{1}{t}}-\frac{e^{\frac{1}{t}}}{t}-2e^{-1})
And now I can't solve this limit. What am I doing wrong here? I put the limit into my TI-89 and as I thought it is undefined. I know the solution is that it converges to \frac{-2}{e} but I can't seem to get there.
Last edited: