Solving Difficult Integrals: Step by Step Guide

  • Thread starter Thread starter basty
  • Start date Start date
  • Tags Tags
    Integration
basty
Messages
94
Reaction score
0

Homework Statement



##(e^y + 1)^2 e^{-y} dx + (e^x + 1)^3 e^{-x} dy = 0##

Homework Equations

The Attempt at a Solution



##(e^y + 1)^2 e^{-y} dx + (e^x + 1)^3 e^{-x} dy = 0##
##(e^{2y} + 2 e^y + 1) e^{-y} dx + (e^{3x} + 3e^{2x} + 3e^x + 1) e^{-x} dy = 0##
##(e^{2y - y} + 2 e^{y - y} + e^{-y}) dx + (e^{3x - x} + 3e^{2x - x} + 3e^{x - x} + e^{-x}) dy = 0##
##(e^{y} + 2 e^{0} + e^{-y}) dx + (e^{2x} + 3e^{x} + 3e^{0} + e^{-x}) dy = 0##
##(e^{y} + 2 (1) + e^{-y}) dx + (e^{2x} + 3e^{x} + 3 (1) + e^{-x}) dy = 0##
##(e^{y} + 2 + e^{-y}) dx + (e^{2x} + 3e^{x} + 3 + e^{-x}) dy = 0##
##(e^{y} + e^{-y} + 2) dx + (e^{2x} + 3e^{x} + e^{-x} + 3) dy = 0##
##(e^{2x} + 3e^{x} + e^{-x} + 3) dy = - (e^{y} + e^{-y} + 2) dx##
## - \frac{1}{e^{y} + e^{-y} + 2} dy = \frac{1}{e^{2x} + 3e^{x} + e^{-x} + 3} dx##
## - \int \frac{1}{e^{y} + e^{-y} + 2} dy = \int \frac{1}{e^{2x} + 3e^{x} + e^{-x} + 3} dx##

It is a difficult integration. What next?
 
Physics news on Phys.org
The only thing that I can see here is \frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2.
 
Shyan said:
The only thing that I can see here is \frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2.
You mean sech(), right?
 
Shyan said:
The only thing that I can see here is \frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2.

How do you get ##\frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2##?

I know that ##sech \ x = \frac{2}{e^x + e^{-x}}##.
 
Last edited:
Sorry...Yeah, I meant the hyperbolic thing!
 
Shyan said:
The only thing that I can see here is \frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2.

How do you get ##\frac{1}{e^y+e^{-y}+2}=\frac 1 4 \sec^2 \frac y 2##?

I know that ##sech \ y = \frac{2}{e^y + e^{-y}}##.
 
Last edited:
sech x=\frac{2}{e^x+e^{-x}} -^{x=\frac{y}{2}}\rightarrow sech \frac y 2=\frac{2}{e^{\frac y 2}+e^{-\frac y 2}} \rightarrow sech^2 \frac y 2=\frac{4}{e^{y}+e^{-y}+2}
 
Last edited:
Shyan said:
sech x=\frac{2}{e^x+e^{-x}} -x=\frac{y}{2}\rightarrow sech \frac y 2=\frac{2}{e^{\frac y 2}+e^{-\frac y 2}} \rightarrow sech^2 \frac y 2=\frac{4}{e^{y}+e^{-y}+2}

Why ##sech \ x = \frac{2}{e^x + e^{-x}} - x##?

And why it equal to ##\frac{y}{2}##?

The correct one is ##sech \ x = \frac{2}{e^x + e^{-x}}##, not ##\frac{2}{e^x + e^{-x}} - x##.

What this -x variable mean?
 
Oh...I meant to be a little fancy but looks like it was a bad idea. I meant take sech x=\frac{2}{e^x+e^{-x}} and then set x=\frac y 2.
 
  • #10
Shyan said:
sech x=\frac{2}{e^x+e^{-x}} -x=\frac{y}{2}\rightarrow sech \frac y 2=\frac{2}{e^{\frac y 2}+e^{-\frac y 2}} \rightarrow sech^2 \frac y 2=\frac{4}{e^{y}+e^{-y}+2}

You said ##sech \ \frac{y}{2} = \frac{2}{e^{\frac{y}{2}} + e^{-\frac{y}{2}}}##
##= \frac{2}{e^{\frac{y}{2}} + \frac{1}{e^{\frac{y}{2}}}}##

##= \frac{2}{\frac{(e^{\frac{y}{2}})^2 + 1}{e^{\frac{y}{2}}}}##

##=\frac{2 e^{\frac{y}{2}}}{(e^{\frac{y}{2}})^2 + 1}##

##=\frac{2 e^{\frac{y}{2}}}{(e^{\frac{y}{2}}. \ e^{\frac{y}{2}}) + 1}##

##=\frac{2 e^{\frac{y}{2}}}{e^{\frac{y}{2} + \frac{y}{2}} + 1}##

##=\frac{2 e^{\frac{y}{2}}}{e^{\frac{y + y}{2}} + 1}##

##=\frac{2 e^{\frac{y}{2}}}{e^{\frac{2y}{2}} + 1}##

##=\frac{2 e^{\frac{y}{2}}}{e^{y} + 1}##

Please explain. I am really confuse.
 
  • #11
When you write this

exdx/(ex + 1)3 = - eydy/(ey + 1)2

isn't each side easily recognised as derivative of something?
 
  • #12
epenguin said:
isn't each side easily recognised as derivative of something?
Or if you don't recognize the derivatives, try the obvious substitutions.
 
  • #13
epenguin said:
When you write this

##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

isn't each side easily recognised as derivative of something?

I still don't get it. Give me more clue please.
 
  • #14
basty said:
I still don't get it. Give me more clue please.
Vela gave you a clue in post #12. Try it.
 
  • #15
Mark44 said:
Vela gave you a clue in post #12. Try it.

##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

I shall integrate the left side (the x variable) first. If using the substitution method, which one should be substituted?
Let ##u = e^x## or ##u = e^x + 1##?
 
  • #16
basty said:
##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

I shall integrate the left side (the x variable) first. If using the substitution method, which one should be substituted?
Let ##u = e^x## or ##u = e^x + 1##?
Try them both. You should see that one is slightly better than the other.
 
  • #17
##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

(1)
Let ##u = e^x + 1## then ##\frac{du}{dx} = e^x## or ##du = e^x dx##

##\int \frac{e^x dx}{(e^x + 1)^3}##
##= \int \frac{1}{u^3}du##
##= \ln |u^3| + c##
##= \ln (e^x + 1)^3 + c##

(2)
Let ##u = e^y + 1## then ##\frac{du}{dy} = e^y## or ##du = e^y dy##

##\int \frac{-e^y dy}{(e^y + 1)^2}##
##= - \int \frac{e^y dy}{(e^y + 1)^2}##
##= - \int \frac{1}{u^2}du##
##= - \ln |u^2| + c##
##= - \ln (e^y + 1)^2 + c##

From (1) and (2), I get:

##\int \frac{e^x dx}{(e^x + 1)^3} = \int \frac{-e^y dy}{(e^y + 1)^2}##
##\ln (e^x + 1)^3 + c = - \ln (e^y + 1)^2 + c##

Is it correct?
 
  • #18
basty said:
##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

(1)
Let ##u = e^x + 1## then ##\frac{du}{dx} = e^x## or ##du = e^x dx##

##\int \frac{e^x dx}{(e^x + 1)^3}##
##= \int \frac{1}{u^3}du##
##= \ln |u^3| + c##
##= \ln (e^x + 1)^3 + c##

(2)
Let ##u = e^y + 1## then ##\frac{du}{dy} = e^y## or ##du = e^y dy##

##\int \frac{-e^y dy}{(e^y + 1)^2}##
##= - \int \frac{e^y dy}{(e^y + 1)^2}##
##= - \int \frac{1}{u^2}du##
##= - \ln |u^2| + c##
##= - \ln (e^y + 1)^2 + c##

From (1) and (2), I get:

##\int \frac{e^x dx}{(e^x + 1)^3} = \int \frac{-e^y dy}{(e^y + 1)^2}##
##\ln (e^x + 1)^3 + c = - \ln (e^y + 1)^2 + c##

Is it correct?

That is certainly not correct. What is:

$$\int u^{-3} \space du$$
 
  • #19
Zondrina said:
That is certainly not correct. What is:

$$\int u^{-3} \space du$$
Good catch, Zondrina. I totally missed that he was using this integration "rule" (in quotes because it's not an integration rule):
##\int \frac{dx}{f(x)} = ln|f(x)| + C##
 
  • #20
Zondrina said:
That is certainly not correct. What is:

$$\int u^{-3} \space du$$

Thank you for the correction.

Let I correct the mistake:

##\frac{e^x dx}{(e^x + 1)^3} = \frac{-e^y dy}{(e^y + 1)^2}##

(1)
Let ##u = e^x + 1## then ##\frac{du}{dx} = e^x## or ##du = e^x dx##

##\int \frac{e^x dx}{(e^x + 1)^3}##
##= \int \frac{1}{u^3}du##
##= \int u^{-3} du##
##= \frac{1}{-3+1}u^{-3+1} + c##
##= \frac{1}{-2}u^{-2} + c##
##= - \frac{1}{2}(e^x + 1)^{-2} + c##

(2)
Let ##u = e^y + 1## then ##\frac{du}{dy} = e^y## or ##du = e^y dy##

##\int \frac{-e^y dy}{(e^y + 1)^2}##
##= - \int \frac{e^y dy}{(e^y + 1)^2}##
##= - \int \frac{1}{u^2}du##
##= - \int u^{-2} du##
##= - \frac{1}{-2+1} u^{-2+1} + c##
##= - \frac{1}{-1} u^{-1} + c##
##= u^{-1} + c##
##= (e^y + 1)^{-1} + c##

From (1) and (2), I get:

##\int \frac{e^x dx}{(e^x + 1)^3} = \int \frac{-e^y dy}{(e^y + 1)^2}##
##- \frac{1}{2}(e^x + 1)^{-2} + c = (e^y + 1)^{-1} + c##

Is it correct?
 
  • #21
That looks better. In the last line you have this:
##- \frac{1}{2}(e^x + 1)^{-2} + c = (e^y + 1)^{-1} + c##
You shouldn't use the same constant on both sides.
##- \frac{1}{2}(e^x + 1)^{-2} + c_1 = (e^y + 1)^{-1} + c_2##
Or you can combine both constants into a third constant, like so:
##- \frac{1}{2}(e^x + 1)^{-2} = (e^y + 1)^{-1} + c##
 
  • #22
Mark44 said:
That looks better. In the last line you have this:
##- \frac{1}{2}(e^x + 1)^{-2} + c = (e^y + 1)^{-1} + c##
You shouldn't use the same constant on both sides.
##- \frac{1}{2}(e^x + 1)^{-2} + c_1 = (e^y + 1)^{-1} + c_2##
Or you can combine both constants into a third constant, like so:
##- \frac{1}{2}(e^x + 1)^{-2} = (e^y + 1)^{-1} + c##

OK.
 
  • #23
It's on right lines at least, but not quite correct is you have written the same integration constant on both sides which is tantamount to an integration constant of 0, so that is conceptually not quite correct. You only need one integration constant - I hope clear why.

Apart from that you don't ever need to ask us whether an integration is correct - you can tell us rather because you can always check correctness by differentiation.

Also (Polya Principle) in doing that you might notice how you might have arrived at the result a bit faster, ideally, though getting there somehow is the most important.

(posting overlap)
 
Back
Top