Difficult series convergence proof

The1TL
Messages
23
Reaction score
0

Homework Statement


Show that given some ε > 0, there exists a natural number M such that for all n ≥ M, (a^n)/n! < ε


Homework Equations





The Attempt at a Solution



Ok so I know this seems similar to a Cauchy sequence problem but its not quite the same. So I am looking for a potential value for M that would complete my proof. So far I have found that if M = ε(a^2+1) then it works, through experimenting with different values for a. However, I cannot seem to find a way to show that (a^(M))/M! < ε. Does anyone know a way to do this? Or should I choose a different value for M?
 
Physics news on Phys.org
The1TL said:

Homework Statement


Show that given some ε > 0, there exists a natural number M such that for all n ≥ M, (a^n)/n! < ε

Homework Equations


The Attempt at a Solution



Ok so I know this seems similar to a Cauchy sequence problem but its not quite the same. So I am looking for a potential value for M that would complete my proof. So far I have found that if M = ε(a^2+1) then it works, through experimenting with different values for a. However, I cannot seem to find a way to show that (a^(M))/M! < ε. Does anyone know a way to do this? Or should I choose a different value for M?
Wouldn't it suffice to prove that lim (n→∞) of a^n/n! = 0 for any real positive a? (BTW, that a is assumed to be positive can be inferred from the question statement, since negative a would yield negative values for the term when n is odd, which would violate the ε > 0 stipulation).

This can be done very easily if you're allowed to assume the Taylor series for e^a, which you know converges for all a. This means that the series also satisfies all the tests for convergence, one of which is the limit test (meaning that lim (n→∞) of a^n/n! = 0). The ratio test (ratio between successive terms, which is a/(n+1)) is also met because the limit of the ratio is 0 (which is less than 1).

So you've established that the series consists of positive (when a is positive) terms that steadily decrease, with a limit value of 0. It is therefore assured that if n were set sufficiently high, you would have a term < ε, with subsequent terms continuing to steadily decrease.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top