Difficult Understanding Magnitude and Phase Shift of Transfer Function

AI Thread Summary
The discussion centers on understanding the magnitude and phase shift of a transfer function. The original poster struggles with transitioning from the transfer function to the equations for magnitude and phase shift, questioning the logic behind finding the magnitude of the complex denominator. Clarifications suggest that multiplying the numerator and denominator by the complex conjugate can aid in understanding both the magnitude and phase angle. Additionally, graphical representation of complex numbers is recommended for better comprehension. Overall, the conversation emphasizes the importance of manipulating complex numbers to clarify these concepts.
wellmoisturizedfrog
Messages
3
Reaction score
1
TL;DR Summary
I am unsure if my current understanding of transfer functions is correct.
Hello,

My textbook offers the following transfer function as an example.

1701556509480.png


It then goes on to explain that the following equations represent the magnitude and phase shift of the transfer function.

1701556549125.png


However, I am having some difficulty jumping from the first equation to these equations. From my understanding, in order to find the magnitude of the transfer function, the magnitude of the complex number in the denominator is found. I'm not sure if this logic is correct.

I am also unsure about how the equation for the phase shift of the transfer equation has a negative sign in front. I understand the other aspects of it, though.

I would appreciate any clarifications.
 
Engineering news on Phys.org
Plotting the complex numbers graphically may help you understand why the denomiator is that way.

Multiply numerator and denominator by complex conjugate of denominator should help understand the angle.
 
scottdave said:
Multiply numerator and denominator by complex conjugate of denominator should help understand the angle.
And the magnitude as well......this is the standard way to manipulate complex numbers.
 
  • Like
Likes scottdave and alan123hk
Ah I see, thank you for the insight! I appreciate the insight and resources.
 
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top