Diffraction Grating and Dispersion

AI Thread Summary
A diffraction grating with a slit separation of 2094.0 nm is analyzed for the dispersion of its 2nd order lines at a 30-degree angle. The initial confusion arose from incorrect calculations of wavelength and the need for the correct dispersion equation. The correct formula for dispersion is D = m/(d cosΘ), leading to a calculated dispersion of 1.10 degrees per micrometer. The discussion emphasizes the importance of using the right equations and understanding the relationship between angle and wavelength. Ultimately, the key takeaway is mastering the mathematical relationships in diffraction to solve such problems effectively.
lauraliz94
Messages
2
Reaction score
0
1. The problem statement
A diffraction grating has a slit separation of 2094.0 nm. What is the dispersion of the 2nd order lines at an angle of 30 degrees (in degrees per micrometer)?

Homework Equations


dsinΘ=mλ
y=(mDλ)/d

3. Attempt at a solution
I began by finding λ using the first equation, so...
2λ=.002094(sin(.30))
λ=.00000548205
Note: I changed d from nm to mm before I began any calculations

We haven't gone over this in class yet, so I'm confused on where to go from here. I believe it has something to do with the second equation listed above, but I don't know what variable represents the dispersion or if these are really even the equations I need. I would like some guidance as for what steps to take next or what equations I should be using- I think just a push in the right direction could help immensely.
 
Physics news on Phys.org
Hello LL, welcome to PF :)

Check your calculations ! sin(.30) is not the sine of 30 degrees ! I don't see how you can end up with 5.5 nm wavelength (assuming you report it in mm -- why do you do that if they want an answer in degrees per micrometer ?).

And the angular dispersion is nothing else than ##d\theta\over d\lambda##.
So you're better off with the first eqn than with the second (that is -- if I am not mistaken -- a distance y off-axis on a screen at distance D).

Now, what is ##d\theta\over d\lambda## at ##\ \ \theta = \pi/6\ \ ## if ## \ d\sin\theta = 2\lambda\ ## ?

It's more math than physics...
 
Hi BvU!

Alright, I was able to work on the problem in class- I was missing a vital equation that made the whole process really easy.

The equation should be D=m/(d)cosΘ

So if...
D=dispersion
m=2
d=2.094 micrometers
Θ=30 degrees

Then the equation reads...
D=(2)/(2.094cos(30))
D=1.10 deg/micrometer

I'm sorry about the confusion, I really appreciated your help! You were right, it was just figuring out what math is the right math!
 
And here's me thinking you were supposed to derive this vital equation. You were nearly there!

The "math" (physicists have their own ideas about how to deal with differentials :) ) is real easy: $$
\ d\sin\theta = 2\lambda\quad\Rightarrow\ d \cos\theta \; d\theta = 2\; d\lambda\quad \Rightarrow\ {d\theta\over d\lambda} = {2\over d\cos\theta}$$
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Back
Top