How Do You Calculate the Angle for Retroreflection in a Diffraction Grating?

phantom113
Messages
19
Reaction score
0
1. Homework Statement

I'm choosing an angle for a diffraction grating such that a laser of particular wavelength λ is retroreflected (reflected back along incident path).

2. Homework Equations
If you have a better way than using the equation below, feel free to explain. The book that I'm looking through treats the blazed diffraction grating as a set of N slits. This results in the equation

I(θ)=\frac{I(0)}{N2}(sinc(β)^{2})(\frac{sin(Nα)}{sin(α)})^{2}

where β=(kb/2)sin(θ) and α=(ka/2)sin(θ) with b=length of slit and a=distance between center of two adjacent slits

k is the wavenumber(I think).


3. The Attempt at a Solution
What I'm looking for is a kick in the right direction. I'm not sure how this equation helps me. I don't know how to use k and and I don't really know a or b (although I could calculate them). I'm not sure how N^2 comes into play since I don't know the total number of slits on the grating. Also I don't know why the total number of slits should play much of a role when the laser is incident on only a tiny portion of the grating. I think there is something fundamental that I'm not understanding. Obviously I want the intensity to be maximized along retroreflected path. Any help would be great. Thank you.
 
Last edited:
Physics news on Phys.org
Does anyone know how to determine the angle at which to place a diffraction grating such that a particular wavelength of light is reflected back along the path of incidence? Do I need to rephrase the question? Any help is much appreciated.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top