Dimensional Regularization of an Integral

Sunset
Messages
61
Reaction score
0
Hi!

I want to renormalize the following UV-divergent integral using Dimensional Regularization:

\int_{- \infty}^{\infty} \frac{d^4 p}{\left(2 \pi \right)^4} \frac{1}{a p_0^2 +\left(a p_x^2+a p_y^2+a p_z^2 +M^2\right)^2}

a>0

I can only find literature which deals with integrands f \left(p\right), i.e. the components of p=(p_0,p_x,p_y,p_z) do not appear isollated as in my integral above. I found for example on p.854 (M>0) resp. p.862 (M=0) of "Leibbrandt: Introduction into the technique of Dimensional regularization" (see http://prola.aps.org/abstract/RMP/v47/i4/p849_1" ) a general prescription how to do DimReg, but I guess I cannot apply it in my case.

Maybe step (ii) would be \frac{1}{a p_0^2 +\left(a p_x^2+a p_y^2+a p_z^2 +M^2\right)^2} = \int_{0}^{\infty} e^{ - \alpha \left(a p_0^2 + \left[a p_x^2+a p_y^2 + a p_z^2 + M^2\right]^2 \right) }

But step (iii) I cannot perfom because I don't have a generalised gaussian integral. Unfortunately I haven't found a corresponding formulae for my case...


Maybe someone of you has an idea how the prescription in the URL can be generalised, or where to look for a hint how to cope with the integral?

Martin
 
Last edited by a moderator:
Physics news on Phys.org
I'm a bit confused. what's the difference between M and p0? I guess its some four-dim relativistic stuff you are doing?

you could at least integrate d^3p=4*pi*p^2*dp and integrate out that analytic first, but then you get p0 left, which is hard to integrate out.
 
Hi!

sorry, I wasn't able to read & write until today, due to the server problems.

The integral is a divergent part of a thermal integral (finite temperature field theory). I carried out the Matsubara Sum and I received the contribution \int \frac{d^3 \bf{k} }{\left( 2 \pi \right)^3 } \frac{T}{\epsilon^2_z}

I introduced a integration over \kappa to receive an integral over 4 real-valued momenta.

\int \frac{d^3 \bf{k} }{\left( 2 \pi \right)^3 } \frac{T}{\epsilon^2_z} = \int \frac{d^3 \bf{k} }{\left( 2 \pi \right)^3 } \frac{T Z}{\pi} \int\limits_{-\infty}^{\infty} d \kappa \ \frac{1}{Z^2 \kappa^2 + \epsilon^4_z}

with \sqrt{Z^2 \bf{k}^2 +M^2 } \equiv \epsilon_z

Leibbrandts prescription is also for such integrals but he assumes that the integral is made of propagators. Although my integrand looks similar to a propagator, it differs from it because of the +signs instead of the -signs from the euclidean metric (I guess that caused your confusion)

My question is mainly: why does the prescription of Leibbrandt assume that there are always propagators in the integrals you want to dimReg-ularise...? There are definitely others! Where can such a prescription be found? Or how can Leibbrandts be applied to others?

I managed to renormalize the above integral with a CT-scheme, but I would like to know how it is with DimReg...
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top