Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Dirac delta and exponential

  1. Aug 4, 2006 #1
    Let be the exponential:

    [tex] e^{inx}=cos(nx)+isin(nx) [/tex] [tex] n\rightarrow \infty [/tex]

    Using the definition (approximate ) for the delta function when n-->oo

    [tex] \delta (x) \sim \frac{sin(nx)}{\pi x} [/tex] then differentiating..

    [tex] \delta ' (x) \sim \frac{ncos(nx)}{\pi x}- \frac{\delta (x)}{\pi x} [/tex]

    are this approximations true for big "n" ??.. i would like to know this to compute integrals (for big n ) of the form:

    [tex] \int_{2}^{\infty} dx f(x,n)e^{inx} [/tex]

    thanks....:rolleyes: :grumpy: :tongue2:
  2. jcsd
  3. Aug 10, 2006 #2
    You can say:

    [tex]\frac{\sin(nx)}{\pi x} \rightarrow \delta (x) [/tex]

    for [tex]n \rightarrow \infty[/tex] in the sense of distributions. But, by derivating, you have:

    [tex] \frac{n x \cos(n x) - \sin(n x)}{\pi x^2} \rightarrow \delta'(x) [/tex].

    [tex]\frac{ \cos (n x)}{x^2}[/tex] and [tex]\frac{1}{x} \delta(x)[/tex] are not distributions! They are meaningless as distributions.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook