Dirac Delta Function: Scaling and Shifting

math&science
Messages
24
Reaction score
0
Just have a question about the dirac delta function. I understand how you would write it if you want to shift it but how would you scale it assuming we are using discrete time. Would you write 2*diracdelta[n] or diracdelta[2n]. Also, would that increase it or reduce it by 2 meaning that instead of it being 1 at n=0, it would be 2 instead or would it be 1/2. Does it work the same way as scaling other functions in other words? Thank you!
 
Mathematics news on Phys.org
Remember the defining property of the Dirac delta:

\int_{-\infty}^{\infty} \delta(x)dx = 1

Thus

\int_{-\infty}^{\infty} \delta(ax)dx = \frac{1}{a} \int_{-\infty}^{\infty} \delta(y)dy = \frac{1}{a}

So we can think of multipling the argument by a as being the same thing as dividing the function by a:

\delta(ax) = \frac{1}{a}\delta(x)
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top